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Figure 1: Real world example of the steps of our algorithm. We estimate the blur at edge locations in the image
(b), then we interpolate the values to close the gaps (c). This blur map can be used to magnify the defocus blur
(d).

ABSTRACT

A shallow depth-of-field is often used as a creative element in photographs. This, however, comes at the cost
of expensive and heavy camera equipment, such as large sensor DSLR bodies and fast lenses. In contrast,
cheap small-sensor cameras with fixed lenses usually exhibit a larger depth-of-field than desirable. In this case
a computational solution is suggesting, since a shallow depth-of-field cannot be achieved by optical means. One
possibility is to algorithmically increase the defocus blur already present in the image. Yet, existing algorithmic
solutions tackling this problem suffer from poor performance due to the ill-posedness of the problem: The amount
of defocus blur can be estimated at edges only; homogeneous areas do not contain such information. However,
to magnify the defocus blur we need to know the amount of blur at every pixel position. Estimating it requires
solving an optimization problem with many unknowns.

We propose a faster way to propagate the amount of blur from the edges to the entire image by solving the
optimization problem on a small scale, followed by edge-aware upsampling using the original image as guide.
The resulting approximate defocus map can be used to synthesize images with shallow depth-of-field with quality
comparable to the original approach. This is demonstrated by experimental results.

Keywords: defocus blur magnification, image processing, optimization, depth-of-field, depth map blur map,
computational photography

1. INTRODUCTION

Creating photographic images with a shallow depth-of-field requires two features: a camera with a large sensor
and a lens with a large aperture. Both are required, since even a fast lens in combination with a small sensor is
known to exhibit an unpleasant bokeh. Both features are usually limited to high-end equipment whereas cheap
point-and-shoot cameras or cameras embedded in cell phones have neither. Furthermore, a photographer has
to decide on the depth-of-field at the time of shooting or even well before when he or she decides what lenses

Version of March 18, 2013. Cite as: F. Kriener, T. Binder, M. Wille, “Accelerating defocus blur
magnification,” Proceedings SPIE Vol. 8667 (Multimedia Content and Mobile Devices), 86671Q (2013). DOI:
http://dx.doi.org/10.1117/12.2004118

Copyright 2013 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for
personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for
commercial purposes, or modification of the content of the paper are prohibited.

1



to bring. This calls for a solution of simulating a shallow depth-of-field computationally and with little user
intervention. Existing methods1,2 roughly follow the same principle, comprising the following three steps.

First, the amount of defocus blur is estimated at edge locations of the original photograph. This yields
a sparse defocus map. Second, the sparse data is propagated using the original image as guidance to obtain
a full defocus map. The difficulty of this step is to preserve blur discontinuities at edges, while at the same
time closing the gaps smoothly. We can express this problem as an optimization problem whose complexity is
proportional to the number of pixels. For this reason, solving the optimization problem is time-consuming; it is
the performance bottleneck of the present approach. Third, the full defocus map is used by a blurring algorithm
to apply the desired bokeh effect to the image. Of course, the choice of the blurring algorithm is highly subjective
and therefore outside the scope of this paper.

We present a way to speed up the second step of the approach just outlined: the computation of a dense
defocus map from sparse data. The main idea is to reduce the complexity of the optimization problem by solving it
on a smaller scale, and thereby significantly reducing the amount of unknowns, followed by edge-aware upsampling
that uses the original photograph as guidance. Our experiments show that this yields results similar to the non-
downsampled results even though we lose information in the downsampling phase. Ordinary upsampling would
blur edges, which in turn would produce artifacts in the final image. Therefore, we employ edge-aware upsampling
to ensure that edges remain sharp. Our experimental results show that such an approximate defocus map is
sufficient to create high quality shallow depth-of-field images from photographs with a large depth-of-field.

1.1 Related Work

The defocus blur of an image contains information about the depth of the scene. Humans instinctively relate
the blur to the depth and machines can be taught to recover the depth in various ways:

Shape from focus3–5 is a technique to recover the depth of a scene using a stack of images captured with
different focal distances and a small depth-of-field, possibly by changing the aperture as well. The depth can
be recovered by estimating the sharpness for each pixel of each input image and relating it to the focal distance
where the sharpness measurement is maximal. Like other techniques that compare images with different focus
and/or aperture settings shape from focus requires a calibrated camera.

Shape from defocus6–10 uses the blur of the image instead of the sharpness to estimate the depth. However,
the blur increases with the distance to the focal plane in both directions. Therefore, the blur is not directly
related to depth, as it can be strong in front and behind the focal plane. Although this sign ambiguity could be
overcome by incorporating chromatic aberration11, present shape from defocus methods usually require a second
image with a different focal distance and therefore a calibrated camera as well. Zhou et al.12 even modify the
optical system by using coded apertures to increase accuracy.

Focal stack compositing13,14 uses a stack of shallow depth-of-field images as well and combines them to create
arbitrary depth-of-fields effects. It is also possible to use it in conjunction with shape from focus or shape from
defocus to synthesize realistic depth-of-field images. One advantage of this approach is that, in theory, an image
with a large depth-of-field can be captured faster using a stack of small depth-of-field captures13.

In contrast, we are only interested in the amount of blur in the image not its depth and can ignore the sign
ambiguity shape from defocus has to address. By using only one image we do not need to compare images,
therefore our camera does not need to be calibrated. Also, we are not interested to speed up the image capturing
process or to create a larger depth-of-field. Our goal is to increase the existing defocus blur in a post-production
step as a creative tool for photographers. Furthermore, we want to apply the effect without planning it in
advance and therefore restrict ourself to using one single image and an off-the-shelf camera.

Defocus magnification without user interaction was first proposed by Bae and Durand1, who modified a blur
estimator by Elder and Zucker15 for robustness to find blur estimates near edges and propagate these by solving
an optimization problem that is based on a colorization scheme16. Zhuo and Sim2 use a simple but robust
method for blur estimation and propagate these using an α-matting method17. In this paper we will follow the
method proposed by Zhuo and Sim and modify it for better performance. However, our modification could also
be applied to the method proposed by Bae and Durand.
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The heart of our acceleration scheme (section 2 below) is the guided upsampling of a lower resolution blur
map. This problem is similar to the upsampling of a low resolution depth map: Park et al.18 interpret this
problem as a super-resolution problem and employ an optimization scheme that is similar to the propagation
used by Bae and Durand1 for upsampling the depth map. This however incurs exactly the cost that we are trying
to avoid by downsampling the image and solving the propagation problem on that smaller scale. Faster edge-
aware upsampling can be achieved using bilateral filtering (e.g. Yang et al.19) or joint bilateral upsampling20 as
proposed by Chan et al.21 We will use the guided filter22 for this task as it connects in a natural way with the
propagation method.

2. DEFOCUS BLUR MAGNIFICATION

Blur Map Creation Blur Magnification
I α O

I

Figure 2: Overview of the general algorithm. I is the input image, α is the full blur map, and O is the output
image.

The main difficulty in defocus blur magnification, as shown in figure 2, is the creation of a map containing
the spatially-varying blur for every pixel, we call this the blur map. Generating the blur map is difficult because
the direct estimation of blur is only possible near edges. A patch without edges does not change much after
being blurred, because a blur is a filter that suppresses high frequencies but allows lower frequencies to pass.
Therefore, the blur map creation process is split into two steps, as shown in figure 3. Afterwards we present our
acceleration method.

First, we estimate the blur near edge locations using the algorithm proposed by Zhuo and Sim2. We call the
result the sparse blur map. Second, we propagate the known values from the sparse blur map to every pixel in
the image to obtain the full blur map. For this propagation we employ an optimization algorithm based on an
α-matting algorithm devised by Levin et al.17 We call this the direct method (see figure 3).

Blur Estimation

Propagation

Blur Map Creation – Direct Method

I

β

α

Figure 3: Overview of the direct blur map creation algorithm. I is the input image, β the sparse blur map, and
α is the full blur map. Everything is done at full resolution.

The propagation step is the bottleneck of the direct method because it needs to solve an optimization problem
with many unknowns whereas the blur estimation step consists solely of local operations. We accelerate it by
downsampling the estimated sparse blur map β by a factor of two and solve the optimization problem on that
smaller scale. Figure 4 provides a block diagram illustrating our method. To obtain a full resolution blur map
from this low resolution blur map we apply edge-aware upsampling. The edge-aware upsampling algorithm is
based on the guided filter proposed by He et al.22 and is closely related to the α-matting algorithm used in the
propagation step. Experiments show that the error introduced by this acceleration technique compared with the
direct method is quite small and does not corrupt the end result in a noticeable way.

For the blur magnification step in figure 2 one can use any algorithm that emulates lens blur based on a
depth map. Such algorithms are readily available23–25; we only replace the depth map input with the blur map.
For the examples in this paper we use the Lens Blur feature of Adobe Photoshop R© CS6.
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Figure 4: Overview of our blur map creation algorithm. Here Ĩ and β̃ are the downsampled input image and
the downsampled sparse blur map, respectively α̃ is the full blur map at low resolution. The dashed blue blocks
highlight our acceleration scheme.

2.1 Blur estimation

As said, we base our blur estimation on the method by Zhuo and Sim2. Assuming a Gaussian defocus blur we
can estimate its parameters by blurring the original image via convolution with a Gaussian kernel and comparing
the gradients of the original to the blurred version. Of course, the defocus blur of a lens is not a Gaussian blur,
but that hardly matters because our objective is not to estimate the exact σ of a Gaussian but to represent the
amount of perceived blurriness.

The blur estimation algorithm is best described in the continuous domain (which we will employ here and
only here). Let u : R2 → R be a differentiable 2D grayscale image and gσ : R2 → R a Gaussian with σ > 0.
Let u0 = u ∗ gσ0 be the blurred image with σ0 > 0 and let E ⊂ R2 be the set of edge locations of the image
u. Here we pragmatically define edge as having sufficiently large gradient magnitude. At x ∈ E we can assume
‖∇u0(x)‖ < ‖∇u(x)‖ and use the following formula to estimate the blur σ̂ : E → R at edge locations (see Zhuo
and Sim for the derivation)

σ̂(x) = σ0

√
‖∇u0(x)‖2

‖∇u(x)‖2 − ‖∇u0(x)‖2
. (1)

It is straightforward how this formula carries over to a discrete domain. We implemented it using Canny’s
algorithm for edge detection and the Scharr operator∗ for gradient estimation. The result was blurred with the
guided filter22 to make the method more robust against noise. The result is a discrete image denoted by β ∈ RN
with undefined values set to 0, here N is the number of pixels.

2.2 Propagation

The previous step estimates the amount of blur at edge locations, but we need to know the amount of blur at
every pixel position. The gaps between the edges need to be closed by propagating the blur information from the
edges across the image. This is done by incorporating information from the source image into the propagation
algorithm to direct the propagation of information from the edges into the gaps but not across edges.

Following Zhuo and Sim2 once more, we base the propagation on an α-matting method proposed by Levin et
al.17 Let I = {1, 2, . . . N} be the set of pixel indices of the image I = (Ik)k∈I ∈ RN×3 with Ik = (IRk , I

G
k , I

B
k )T .

We assume that in a small window w ⊆ I around any pixel the blur map α = (αi)i∈I ∈ RN can be approximated
in w by an affine function of the image I;

αj ≈ aT Ij + b for all j ∈ w, (2)

where a ∈ R3 and b ∈ R are constant in the window w. This assumption is reasonable since an edge in the
image I does not necessarily create an edge in the blur map α, e.g. in a flat but differently colored region. Also,
a difference in color does not imply a difference in depth or defocus blur, e.g. with similar colored objects in the
front and the back of a scene that overlap in a photograph. The downside is that some unwanted information

∗The Scharr operator is similar to the Sobel operator but numerically optimized for rotational symmetry.
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from the original image might seep into the blur map. We found ,however, that this does not lead to a noticeable
corruption in the application of defocus magnification.

Using the assumption above we find the blur map by minimizing the functional

J̃Z(α,A, b) =
∑
i∈I

∑
j∈wi

(
αj − aTi Ij − bi

)2
+ εaTi ai

+ λ
∑
i∈I

dii (αi − βi)2 (3)

with respect to α = (αi)i∈I ∈ RN , A = (ai)i∈I ∈ RN×3 and b = (bi)i∈I ∈ RN , where wi ⊂ I is a small window
around the i-th pixel, β = (βi)i∈I ∈ RN is the sparse blur map, and D = (dij)i,j∈I ∈ RN×N is a diagonal matrix
with dii = 1 if i is an edge location and dii = 0 otherwise. The parameter ε > 0 in the above functional controls
its regularization and biases the solution towards a smoother α (cf. Levin et al.17) and the weighting parameter
λ > 0 balances both cost functions, allowing to deviate from the input data to achieve a better overall fit.

It can be shown17 that A and b can be eliminated from the equation, reducing the amount of unknowns from
5N to N . This yields the functional

JZ(α) = αTL α+ λ (α− β)TD (α− β), (4)

where L = (lij)i,j∈I ∈ RN×N is called the matting Laplacian. It is defined as

lij =
∑

{k∈I|i,j∈wk}

(
δij −

1

|wk|

(
1 + (Ii − µk)

T

(
Σk +

ε

|wk|
U3

)−1
(Ij − µk)

))
, (5)

where δij designates the Kronecker delta, |wk| ∈ N is the window size (i.e. the number of pixels in the window),
µk ∈ R3 is the mean and Σk ∈ R3×3 is the covariance matrix of the pixels values in the window wk, and
U3 ∈ R3×3 is the 3× 3 identity matrix.

Since the matting Laplacian is symmetric and positive definite (we just need to choose an ε that is big
enough) we can employ the Conjugate Gradient (CG) method (see Golub and Van Loan26 for details) to solve
the resulting linear system of equations

(L− λD)α = λDβ. (6)

The CG method is an iterated method and the computational cost for each iteration of a naive implementation
of the CG algorithm is dominated by the matrix-vector product Lp, for some p ∈ RN . However, this cost can
be mitigated by a technique found by He et al.27 that allows us to compute the product Lp using a series of box
filter operations, which can be implemented effectively using the integral image technique28 or cumulative row
and column sums.

2.3 Acceleration scheme

It is clear that doing the propagation step on a smaller scale results in a reduced time consumption. The question
is if a high-quality full size blur map can be created from a far smaller blur map. Our experiments show that
this is possible indeed. Therefore we propose the following scheme.

First, we estimate the blur using the original, full resolution image. This is necessary because downsampling
an image is a low-pass filtering operation (unless it creates artifacts), but we need the the high frequency content
for the blur estimation. This is not a performance issue, because the estimation is way faster than the propagation.
Second, we downsample the sparse blur map using bicubic interpolation by a factor of two and solve equation (6)
using the Conjugate Gradient method. For this we employ He’s functional form of the multiplication with the
matting Laplacian. We found that this way we obtain a robust blur map for the downsampled image. Third, to
obtain a full size blur map we use a joint upsampling technique proposed by He et al.22 that is closely related
to the matting Laplacian.

Let α̃ ∈ Rn be the solution of (6) for a downsampled sparse blur map β, where n is the number of pixels
for an image on that scale (4n ≈ N), and let ↑2: Rn → RN be the zero-upsampling operator†. We need to find

†The zero-upsampling operator upsamples the input image by inserting zeros in-between every row and column.
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α ∈ RN similar to α̃ satisfying assumption (2). We do that by minimizing the difference between α as defined
by (2) and ↑2 α̃ at pixels with defined blur values (i.e. for all i ∈ I with (↑2 1)i 6= 0, where 1 ∈ Rn is an image
with pixel value 1 for all pixels) by minimizing

JU (ak, bk) =
∑
i∈wk

((
aTk Ii + bk − (↑2 α̃)i

)2
+ εaTk ak

)
(7)

with respect to ak and bk for all k ∈ I, where ε > 0 is a regularization parameter as in (3) and wk = {i ∈
wk | (↑2 1)i 6= 0} is a window around k including only defined blur values of ↑2 α̃. We then define

αj :=
1

|wk|
∑
k∈wj

(
aTk Ij + bk

)
. (8)

Again, this optimization problem can be solved directly and effectively with a series of box blur operations22.

2.4 Experimental Results

We expect that our method produces results very similar to the direct method when compared by a human
observer. A visual comparison of the output of both algorithms confirms this, see figure 5. The question is how
accurate our approximation is when expressed numerically. To compare the methods we ran both with the same
parameters for a varying number of iterations and measured time and mean squared error (MSE) compared to
the result of the direct method at 500 iterations of the CG algorithm. We choose that number because 500
iterations take longer than any reasonable time constraint (more than half a minute for a 0.5 million pixel image
on the machine that we used for the tests) and we do not have a ground truth that we could use to estimate the
error. We repeated each measurement M = 10 times to estimate sample mean T and sample variance s2:

T =
1

M

M∑
k=1

Tk, s2 =
1

M − 1

M∑
k=1

(Tk − T )2, (9)

where Tk is the measured time of the k-th repeat. The sample variance was less than the timer resolution of our
system (≈ 590 ns) in all our measurements; therefore we will ignore it henceforth.

We used a custom, single-threaded, unoptimized C++ implementation to run the test. All tests ran on a
Mid 2012 Mac Pro with 32GB of Memory and a 6-Core Xeon Processor running OS X 10.8. For all experiments
we used the following parameters. The blur estimation uses σ0 = 3 for re-blurring. Propagation is done using a
7 × 7 window with the parameters ε = 0.001, λ = 0.1. Upsampling uses a 21 × 21 window with ε = 0.01. We
found that these parameters create good results by experimentation. Note that the 21 × 21 window used for
upsampling is empty for the most part, since only every second pixel in each direction has a defined value.

We ran both algorithms for a fixed amount of iterations which we increased after every M = 10 runs and
measured MSE and time as described above. In figure 6 a typical MSE vs. time plot is shown. Here we use the
image that was used for the examples above but we tested with different images and all those plots show the same
characteristics. The size of that image is 800× 536 pixels. Our method converges faster than the direct method
until our method stagnates at the exact solution on the smaller scale (norm of the residual approximately zero).
The direct method takes longer but eventually converges to a numerically better result. However, we do not
strive to find a numerically more exact solution but to find a good approximation for the application of defocus
blur magnification. For this the solution is good if the end result is visually pleasant and free of artifacts, as
seen in figure 5.
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Figure 5: Side-by-side comparison of the direct method (left column) and our method (right column) both at
500 iterations. The top row shows the estimated full resolution blur maps and the bottom row the synthesized
images. The differences in the blur maps are subtle but visible, compare e.g. the flower in the middle of the
notebook. However, the differences in the result images are almost unnoticeable. It takes around 5 seconds to
calculate the lower left image and around 34 seconds to calculate the lower right one.

3. OTHER APPLICATIONS

The described acceleration scheme could be used to accelerate a range of different techniques apart from defocus
blur magnification. Hsu et al.29 use the closed form α-matting algorithm by Levin to estimate how two different
light sources mix across the scene. Using this mixture information they apply spatially-varying white balance
to a photograph to remove color changes that are created by varying lighting colors or amplify them. He et
al.30 use the same α-matting algorithm to estimate the influence of haze in an image and remove it. The haze
information could even be used to estimate depth if we assume a relationship. This again could be used to create
a bokeh effect.

4. DISCUSSION

We successfully applied the method of Zhuo and Sim2 which we modified for better performance by solving the
computation intensive propagation step on a downsampled image followed by edge-aware upsampling.

We could achieve a significant speedup for the propagation step in defocus blur magnification. Although this
comes at the cost of numerical accuracy the resulting images with applied defocus magnification are visually
pleasing, which is what we were aiming for. The runtime for small images is acceptable, i.e. images around
0.5 million pixels take around 2 seconds to process. However, the runtime for state-of-the-art image sizes is
still not fast enough: Modern DSLR sensors have 24 million pixels and more and even cameras embedded in
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Figure 6: Plot of MSE vs. time for the direct and our method. The abscissa shows the CPU time that the
propagation algorithm ran and the ordinate the MSE of the result compared to the result of the direct method
at 500 iterations. Note that the MSE axis is logarithmic.

mobile devices produce images with more pixels. Therefore, we experimented with downsampling by a factor of
4 instead of 2. This, however, creates artifacts. If the blur information α̃ is too small, the optimization problem
(7) will produce a result that orients more strongly on the guidance image I. The result will look more like the
original image and not like the blur map. Because the upsampling algorithm limits us to 2k steps in upsampling
we did not test values in-between 2 and 4. If we could test those values we would find that with decreasing scale
size the influence of the original image increases. Therefore, it is questionable if we could improve our result that
way.

A general problem of the approach, found in all variants of defocus blur magnification, is smooth surfaces in
the image such as human skin or plastic toys. The blur estimation algorithm cannot distinguish between a blurred
edge and a smooth rounded edge, e.g. a round plastic cylinder, because both have the same characteristics in
a 2D image. This can lead to artifacts in such areas, see figure 7. Sometimes these artifacts are not visible
(cf. figure 7 lower left in (b), (d) and (f)), because blurring a smooth rounded edge does not necessarily mean
a corruption in the end result. However, this is not always true and sometimes results in artifacts in the end
result (cf. figure 7 upper left in in (b), (d) and (f)). Some examples of this can be seen in the details right of
the images in figure 7.

We could mitigate artifacts like those described above by providing a scribble based user interface that allows
the user to mark regions as sharp or blurred. However, because of the high computational cost feedback cannot
be given at once which could frustrate the user. Therefore, we are looking for ways to find better blur estimates
in the first place that would allow a truly automated workflow for the blur map creation step.

Finally, a defocus blur must be present in the original image for the algorithm to work. This can easily be
achieved with a large camera sensor and gets harder the smaller the sensor is. For cameras embedded in mobile
phones, which have very small sensors (usually 1/2.5 ′′), a fixed aperture, and a wide angle lens (usually around
35 mm in 35 mm equivalent), the hyperfocal distance is at around 150 cm. This means that magnifing the defocus
blur is only possible when the focus is set to an object near the camera. Thus for the application of defocus
blur magnification on mobile devices a dedicated camera app that guides the user in shooting a photograph for
defocus blur magnification could be a solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: The top row shows the original image (a) with magnified details to the right (b), the row in the middle
shows the blur map (c) with the same regions magnified (d), and the bottom row shows the end result (e) and
details (f). From top left to bottom right in (b), (d) and (f): Rounded plastic surface cannot be distinguished
from blurred surface leading to artifacts in the end result. Sudden change in blur on change of background
texture does not effect the end result. Different surface textures create differences in estimated blur even though
it should be the same with negligible artifact in the result. Smooth shadow on a smooth surfaces is interpreted
as blur, no artifact in end result.
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