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Abstract

Speech transcription of web videos requires first detecting seg-
ments with transcribable speech. We refer to this as segmenta-
tion. Commonly used segmentation techniques are inadequate
for domains such as YouTube, where videos may have a large
variety of background and recording conditions. In this work,
we investigate alternative audio features and a discriminative
classifier, which together yield a lower frame error rate (25.3%)
on YouTube videos compared to the commonly used Gaussian
mixture models trained on cepstral features (30.6%). The alter-
native audio features perform particularly well in noisy condi-
tions.

Index Terms: segmentation, speech detection, voice activity
detection, video

1. Introduction

Speech/nonspeech segmentation in the presence of background
noise is an important first step for automatic speech recogni-
tion, and has received attention from various sources. Common
techniques for segmentation include frame energy-based meth-
ods and Gaussian mixture models (GMMs) trained on Mel-
frequency cepstral coefficients (MFCCs), with a hidden Markov
model (HMM) or other smoothing module.

In the broadcast news domain, the use of HMMs with
GMM emissions of MFCCs has been well studied [1]. Further
investigations include hierarchical segmentation integrated with
factor analysis [2], and energy-based methods combined with
conditional random fields (CRF), which also use the MFCC
GMM log likelihoods as a feature [3]. Additional features such
as PLPs [1] and Chroma [2] have been used in those studies.

Voice activity detection also builds on similar techniques.
Kalman filter noise models have been added to combine noise
suppression or adaptation with voice activity detection [4, 5].
Other features studied for voice activity detection include a
periodic-aperiodic ratio [4], autocorrelation-based voicing fea-
tures [6] and relative energy measurements in different fre-
quency bands [7]. Fundamental frequency and lower-level sig-
nal analysis have also been used with MFCC GMM log likeli-
hoods and mixture posteriors as features to a CRF [8].

Content analysis and speech/music discrimination efforts
present other features of interest [9, 10, 11]. Several of the
features investigated in the current work, such as energy, zero
crossing and flux-based features, as well as line spectral pairs,
have previously been used for hierarchical speech/nonspeech
segmentation of TV news, movie clips, and internet audio
clips [12].

While many of these ideas might aid speech/nonspeech seg-
mentation in uploaded web videos, none has been particularly
evaluated for such a task. However, segmentation is especially
important for uploaded videos, many of which have little or no
speech. Recent work focusing on web videos observed that am-

ateur videos are particularly hard to segment due to ample noise
and recording artifacts [13]; in fact, it omitted such “homebrew”
videos altogether due to the challenges presented. Broadcast
news, which appears to be the closest well-explored area, does
not present the same challenges. In this work, we focus on novel
classification approaches and features, informed by other do-
mains, that are more robust to such conditions. We evaluate
these on a mixed collection of videos selected without human
curation.

In the rest of the paper, we define the novel features (Sec-
tion 2) and classifiers (Section 3) explored, and describe exper-
imental results on a mixed web video data set (Section 4).

2. Features

The baseline (MFCC) feature set consists of 13 MFCCs along
with their first and second derivatives, with the cepstrum nor-
malized over each waveform. The following alternative features
(Alt) are tested against the baseline.

Low short-time energy ratio: The ratio of frames with a
short-time energy below x = 0.5 times the average in a larger
window around a given frame [12]. While frame energy is com-
monly used for speech detection [3, 7], this feature considers the
characteristics of a larger surrounding window; it is expected
to be higher in windows with speech than music or noise, as-
suming speech has more pauses and thus more energy fluctua-
tions [12].

High zero-crossing rate ratio: The ratio of frames with
zero-crossing rate above x = 1.5 times the average in a larger
window around a given frame. As zero-crossing rate is related
to pitch, this is also expected to be higher in speech, which has
alternating voiced and unvoiced sections [12].

Line spectral pairs (LSP): These are transformations of
linear predictive coding (LPC) coefficients that lie on the unit
circle and thus correspond to isolated frequencies. They are ex-
pected to distinguish between speech, noisy speech and music.
Previous work [12] builds a speech codebook from covariance
matrices of the LSPs within speech windows, and labels a test
window by thresholding the distance of its covariance matrix to
this codebook. This work uses raw LSPs.

Spectral flux: This measures the change in spectral ampli-
tudes between consecutive frames. Speech is expected to alter-
nate between periods of change and stability while music has a
more constant rate of change [9, 11].

Spectral centroid: The center of mass of the spectrum,
this is expected to give different results for voiced and unvoiced
speech as well as music, since spectral energy is concentrated
in different regions for each [9, 11].

Spectral rolloff: The frequency point at which the energy
at lower frequencies is equal to z = 90% of the energy at higher
frequencies. This is expected to distinguish between unvoiced
speech, which has more energy in the higher bands, and voiced



speech or music [9, 11].

Ratio of magnitudes in speech band: The ratio of the
sum of magnitudes in frequency bands that typically contain
speech, compared to the sum of magnitudes over the whole
spectrum. This is expected to be higher for voiced speech than
other classes, and is similar to a relative energy by frequency
band metric [7].

Top peaks: The top n = 5 peaks in the magnitude
spectrum, defined by frequency and the corresponding frame-
normalized magnitude. These are expected to represent the
dominant frequencies in the frame, and thus to be different for
voiced speech, music and noise.

Ratio of magnitudes under top peaks: This measures the
ratio of the sum of magnitudes of the top n peaks to the sum of
magnitudes over the whole spectrum. Voiced speech, music and
other harmonic sounds are expected to have a higher proportion
of energy concentrated in the top spectral peaks.

3. Classifiers

Two frame-level classifiers are compared, with and without a
smoothing layer. The study focuses on a binary classification of
speech or nonspeech, with arbitrary recording and background
conditions.

3.1. Frame-level Classifers
3.1.1. Gaussian Mixture Models (GMM)

For an N-dimensional observed feature vector o, and an M-
component GMM, the likelihood of observation o at state s; is:

M
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where w;;, pi; and X;; are respectively the mixture weight,
mean and diagonal covariance for the j'* component of state
s;, and N is a normal distribution. GMMs with a maximum of
64 components each were trained for speech and nonspeech, us-
ing maximum likelihood (ML). Maximum mutual information
(MMI) training on MFCC GMMs also yielded similar perfor-
mance. Overall, this model has 6 (or 384) parameters and a
size of 6M N.

3.1.2. Maximum Entropy Classifier (Maxent)

A maximum entropy classifier is a discriminative model with
the greatest entropy from among those that approximately sat-
isfy a given set of constraints [14]. This study uses a conditional
maximum entropy model. Given the input space of feature vec-
tors O and output space of labels S (in this case, binary), the
conditional probability of a label s; given an observation o is

defined as:
e o(0;si)
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In this case, ¢ is an identity mapping from O x S to itself. The
weight vector w € O x S is learned by maximizing the log
probabilities Pw (s; | 0;) over the training data. The output
predicted by the model for a given observation is the label that
maximizes this conditional probability [14]. Note that for bi-
nary output, ¢(o, s) can be replaced by a mapping on the input
alone, with a single weight associated with each element of the
input vector. Hence the size and parameters of the model are
equivalent to the feature dimensionality (V).

Py (si | o) = ()

3.2. Sequence-level Smoothing

Smoothing here refers to de-noising frame-by-frame classifi-
cations to yield longer contiguous speech and nonspeech seg-
ments. It is commonly achieved with an ergodic hidden Markov
model (HMM), in this case with “nonspeech” and “speech”
states and equal transition cost in either direction. There is no
cost for remaining in the same state, which creates a smooth-
ing effect by discouraging state changes. The transition cost is
selected empirically; section 4.4 suggests that this value has a
large effect on the results and should ideally be learned from the
data or otherwise automatically tuned.

The emission probabilities, b; (o), represent the probability
of observation o given state s;. For the GMM classifier, these
are equal to the GMM emissions (Equation 1).

Because the Maxent classifier is discriminative, it does not
immediately provide probabilities of the form P(o | s;). How-
ever, it is possible to estimate a prior distribution of states from
the training data and set b;(0) = P(s; | 0)/P(s;). In this
case, given that the training data had close to equal amounts of
each state, the probabilities given by the Maxent classifier were
directly used.

4. Experiments
4.1. Data Sets

This work primarily uses an anonymized data set of 95 hours of
YouTube video, divided into 90 hours for training and 5 hours
for testing. Videos were sampled from YouTube in an auto-
mated way based on usage statistics, with more popular videos
having a greater chance of selection to support evaluation on
seemingly important videos. Video segments were manually
defined and labeled as silence, music, noise, speech, or combi-
nations of these labels. Segments had a granularity of 5 seconds
or more for tractability and in light of naturally occurring pauses
in informal speech. Some statistics are presented in Table 1.
Note that the classes are not mutually exclusive; for instance,
“speech with noise” and “speech with music” both include seg-
ments containing speech, noise and music.

Class Training | Test
Clean speech 14.2h 46m
Silence 1.6h 6m

Speech with noise 19.6h 84m
Noise without speech 11.2h 52m
Speech with music 16.7h 63m
Music without speech 39.8h 134m

Table 1: Data set statistics showing the durations of training
(hours) and test (minutes) data for selected classes.

For both training and evaluation, speech samples included
speech with all backgrounds, while nonspeech samples in-
cluded everything without speech. This supported the goal of
detecting speech in arbitrary backgrounds by reducing the mis-
match between training and test conditions. However, similarly
labeled data can easily be leveraged to train and evaluate more
specific models.

4.2. Evaluation Metrics

The models are evaluated using the following metrics. All but
the equal error rate are based on the durations of correct, missed
and false alarm speech at a fixed operating point.



e False alarm rate (FA): The percentage of nonspeech
that is classified as speech.

e Miss rate (Miss): The percentage of speech that is clas-
sified as nonspeech.

e Equal error rate (EER): The point on the ROC curve
(which charts miss and false alarm rates over varying ac-
ceptance thresholds) where the miss rate equals the false
alarm rate. This evaluates frame-by-frame error before
any smoothing.

e Segmentation error (SegErr) = (missed speech + false
alarm speech) / total reference time. This is based on
the NIST speaker diarization error rate without individ-
ual speaker information. It is also similar to the metric
used by Castan et. al. [2], but looks at only the speech
error scaled by the total reference duration.

4.3. Frame-by-frame results

Frame-by-frame errors for the MFCC and A1t feature sets (see
Section 2) are described in Table 2, for both the Maxent and
GMM classifiers. For each experiment, an overall EER is given
as well as the EER in specific background conditions. For ex-
ample, the “Music” column shows the EER for segments that
include music, corresponding to the last two rows of Table 1.
Results for the clean background condition are highly variable,
partly due to the small amount of clean data, especially silence,
in both the training and test sets (see the first two rows of Ta-
ble 1); these are still included for completeness.

Experiment [ Overall [ Music [ Noise | Clean
Maxent

MFCC 40.8 43.6 46.2 52.5

Alt 25.3 29.5 322 44
GMM

MFCC 30.6 33.0 41.1 7.8

Alt 33.8 36.8 38.3 9.3

Augmented MFCC+Maxent
GMM scores 29.2 30.4 42.6 16.3
Cross-products 31.7 36.1 37.7 17.0

Table 2: Equal error rate (EER)% from ROCs based on frame-
by-frame classifications, before smoothing. EER on back-
grounds containing music, noise or neither are also shown. The
final three rows indicate Maxent experiments with the MFCC
Sfeatures augmented either by scores from the MFCC GMM or
by taking cross-products of the MFCC features.

Note that in general, the lowest error rates appear for the
Alt feature set and the Maxent classifier. This suggests that
the features and classifier complement each other in a way suit-
able for frame-by-frame speech/nonspeech classification. With
the GMM classifier, A1t yields a lower EER for data with back-
ground noise, suggesting that the new features contribute some
amount of noise robustness in their own right, even without a
new classifier. This may follow from the fact that a number of
the alternative features look at signal characteristics that distin-
guish between speech and pure noise.

The poor performance of MFCC with the Maxent classi-
fier suggests that MFCCs may be better suited to a generative
model. In particular, the covariance between individual fea-
tures in a frame can be better modeled by a mixture of Gaus-
sians. Since the MFCC coefficients together estimate a spectral
envelope, their covariance may be especially important. Aug-
menting the MFCC features with speech and nonspeech scores

from the MFCC GMM greatly improved MFCC+Maxent per-
formance. Alternatively, expanding the MFCC feature set to in-
clude cross-products of MFCC coefficients also led to improved
performance. These results are depicted in the final section of
Table 2.

4.4. Post-smoothing error

Applying HMM-based smoothing to the frame-by-frame clas-
sification resulted in a neutralization of the gains observed in
Section 4.3. Results for Maxent and GMM with the various
feature sets are described in Table 3.

Classifier | Features | SegErr | FA | Miss
Maxent MFCC 46.8 9.5 | 823

Alt 222 223 | 222
GMM MFCC 19.6 241 | 15.2
Alt 223 226 | 220

Table 3: Results for each feature set and classifier with HMM
smoothing. SegErr shows the overall segmentation error%,
while FA and Miss show the false alarm rate and miss rate re-
spectively, as percentages.

The difference in per-frame and post-smoothing results sug-
gests that the smoothing technique plays a large role in deter-
mining the final accuracy of the system. This is natural, as per-
frame results are expected to be noisy; not only does the data
set have a reference granularity of seconds, but some unvoiced
speech, such as fricatives, may have noise-like characteristics.

Further experiments confirm that smoothing parameters are
also important. Figure 1 shows results for varying HMM
transition weights for two interesting models: Alt+Maxent
and MFCC+GMM. It reveals that while each of these sees some
gain from smoothing, the GMM model gets the largest rela-
tive gain. It is interesting to note that for noisy backgrounds,
Alt+Maxent outperforms MFCC+GMM even after smoothing.

It is also plausible that because the HMM-based smoothing
is set up to fit a generative context (see Section 3.2), a different
smoothing technique may be ideal for the discriminative Max-
ent classifier.

4.5. Analysis

We analyzed roughly 400 features based on the feature sets dis-
cussed above. These included all the raw features used in the
previous experiments as well as first and second derivatives of
the A1t feature set. The square of each of these features was
also considered. Finally, the scores of speech and nonspeech
MFCC GMMs were also evaluated as features.

Features were evaluated on a per-frame basis without
smoothing, using a conditional mutual information crite-
rion [15]. This selects the next “best” feature one at a time, such
that it is the one least subsumed by any of the already selected
features individually. Note that only pairwise dependencies are
considered.

This analysis found the 10 most important features to be:

1. Low short time energy ratio squared (LSTER?)
Nonspeech GMM score

Freq0 (frequency of highest spectral peak) squared
Speech GMM score

MFCC 12 squared
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Figure 1: Segmentation error (SegErr)% for Alt+Maxent and
MFCC+GMM, for different HMM transition costs and back-
ground conditions.

. High zero crossing rate ratio squared

. First derivative of freq0, squared

. Energy between 85 and 255 Hz
. First LSP coefficient

This suggests that both the MFCC GMM scores and the al-
ternative features capture meaningful dimensions without being
redundant. Note that the highest spectral peak as well as its first
and second derivatives appear on this list. Since this peak can
represent a crude pitch approximation, the way it changes across
frames is also relevant. Note also that many of these features
appear more useful when squared, suggesting that higher-order,
kernel-based classifiers would be beneficial.

6
7
8. Second derivative of freq0, squared
9
10

5. Conclusion

An alternative set of features and classifier were shown to pro-
vide better frame-by-frame accuracy for classifying speech ver-
sus nonspeech in web videos. These features also performed
better than conventional MFCCs under noisy conditions, with
both the GMM and Maxent classifiers (see Table 2). Condi-
tional mutual information analysis on a superset of experimental
features found metrics derived from several of the new features
to be among the top differentiators for speech versus nonspeech
(see Section 4.5).

While some of this gain is neutralized upon smoothing, the
smoothing technique explored in this paper is heuristic, espe-
cially when combined with the Maxent classifier. A more prin-
cipled approach is needed, perhaps in the form of CRFs or vot-
ing schemes, or by estimating real transition probabilities in an
HMM or maximum entropy Markov model. Similarly, while
Section 4.5 suggests that the MFCC and Alt features com-
plement each other, intelligent methods to combine the results
from different feature sets and/or classifiers need to be explored.
Such explorations are outside the scope of this paper, although
existing work suggests possible directions [8, 16].

While opportunities for further research abound, this paper
establishes that features and classifiers beyond the conventional
system can benefit speech/nonspeech segmentation, especially
in arbitrary web videos with little control over noise and record-
ing conditions.
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