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ABSTRACT

We evaluate different architectures to recognize multilingual
speech for real-time mobile applications. In particular, we show that
combining the results of several recognizers greatly outperforms
other solutions such as training a single large multilingual system
or using an explicit language identification system to select the
appropriate recognizer. Experiments are conducted on a trilingual
English-French-Mandarin mobile speech task. The data set includes
Google searches, Maps queries, as well as more general inputs such
as email and short message dictation. Without pre-specifying the
input language, the combined system achieves comparable accu-
racy to that of the monolingual systems when the input language is
known. The combined system is also roughly 5% absolute better
than an explicit language identification approach, and 10% better
than a single large multilingual system.

Index Terms— Multilingual speech recognition, acoustic mod-
eling.

1. INTRODUCTION

By some estimates[1], more than half of the world’s population is
multilingual, however most commercial recognition systems remain
monolingual. At the same time, speech recognition is now being
used both to get information from machines (e.g. speak a Google
query) but increasingly to communicate with people by dictating
short messages. Together there is increased pressure to recognize
whatever language might be most appropriate for whatever setting,
without requiring the user to navigate language-selection interfaces,
which themselves are complicated by keyboard requirements and
other geographic considerations. An omnilingual or at least multilin-
gual recognizer would make many of these interactions more natural,
but few users would choose that trade-off if accuracy or latency were
degraded.

With those constraints in mind, we evaluated several multilin-
gual techniques on datasets representative of our current mobile traf-
fic, which is a mix of Voice Input (usually short dictation), Voice
Search (Google queries), and Voice Actions (commands). These are
mostly short utterances recognized in real-time. We started with
a trilingual English-French-Mandarin scenario, and evaluated each
technique on a union of three test sets representative of those lan-
guages.

Recognizing mixed or ”code-switched” utterances (where the
language changes mid-sentence) was not an explicit focus in this
work: providing accurate multilingual recognition was considered
a more fundamental first step. Some limited support for code-
switching is already built into our systems because the underlying
data-driven learning techniques respond to foreign terms of rea-
sonably high frequency. Also, as explained below, the Mandarin
baseline system has special provisions for recognizing English
words since English is so common in our Chinese mobile traffic.

Finally, this paper is not addressing the often-studied problem of
under-resourced languages (see e.g. [2, 3]). Rather we’re focussing
on mature languages where we have a steady stream of recognition
requests, and training and test sets collected from real traffic. All the
systems described in the paper were trained to be production qual-
ity, i.e. discriminatively trained, and optimized for our production
accuracy and latency requirements.

2. DATASETS

The English (En), French (Fr), and Mandarin (Zh) training sets each
contain roughly 1.7 million utterances (over 1500 hours of speech)
that span the different voice-enabled mobile applications used in
those languages. These were all recently collected, are mostly un-
transcribed (a small portion of the Mandarin training set is still
transcribed), and were confidence-filtered for unsupervised training.
Three test sets and three development sets were drawn from the
same traffic at different time intervals and hand-transcribed. We
report accuracies on the test sets. The dev sets were used to optimize
the combination classifiers described below. The test sets for En-
glish, French, and Mandarin contain, 24K, 37K, and 80K utterances
respectively, and the dev sets have similar sizes.

Recognition accuracy is expressed in terms of normalized sen-
tence accuracy (’SACC’), where hyphens, apostrophes, etc. are
stripped from the word strings before comparisons with the human
reference. For each experiment, we report the sentence accuracy
of each individual test set (language), and also the overall accuracy
(’Avg’) where, given no starting estimate for typical multilingual
traffic, we assumed all three languages were equiprobable. The
Mandarin test set was further split into three subsets: Mandarin only
(Zh - 72K utterances), English only (En - 6K utterances), mixed
Mandarin-English (Mix - 2K utterances). Accuracies for the subsets
are also reported.

3. BASELINE SYSTEM

The speech recognition engine used for mobile Google applications
is a standard, large-vocabulary recognizer, with PLP features and
LDA, decision trees, GMM-based triphone HMMs with variable
numbers of Gaussians per state, STC [4] and an FST-based search
[5]. ML training is followed by boosted MMI [6]. The language
models are N-gram models (N=4 for English and Mandarin, 3 for
French) trained from a variety of Google typed and spoken sources
relevant to the overall traffic. A confidence score between 0 and
1 is estimated from lattice-posterior metrics for each recognized
utterance.

The Mandarin baseline model relies on a 75 phoneme/toneme
phone set, where different tones are modeled as different units. A
detailed description of this system is provided in [7]. Because more
than 10% of our Chinese speech data contains English words, the



Mandarin system also has explicit provisions for English recogni-
tion: words from the English lexicon are phonetically mapped to the
Mandarin phone set, and added to the Chinese lexicon. While our
recognition of English words in Chinese remains significantly infe-
rior to that of Chinese words (roughly 5% absolute), the baseline
Mandarin system is by nature bilingual. The French system does not
contain any similar explicit support for English words, though the
phone sets are closer to start with and some lexical overlap results
from the similarity of the two languages. In addition, data-driven
training brought extra foreign words in the French models as well.

System SACC (%)
En Fr Zh (Zh/En/Mix) Avg

En 60.5 3.4 2.8 (0.0/35.8/0.0) 22.3
Fr 0.8 46.2 0.9 (0.0/11.2/0.1) 16.0
Zh 3.8 2.1 41.9 (42.6/37.3/32.5) 16.0

Table 1. Monolingual system accuracies.

Table 1 shows the baseline accuracies of the three monolingual
systems, on the three test sets. Accuracies of less relevant pairs, such
as recognizing the French test set with the Mandarin recognizer, are
greyed-out, even though they are not strictly zero due to language
overlap (the most outstanding being 35.8% accuracy on the English
portion of the Mandarin test set, when recognized with the Ameri-
can English recognizer. The overall recognition accuracy is 49.5%
(average of the three bold accuracies in the table). This assumes the
input language is pre-specified.

4. SINGLE MULTILINGUAL SYSTEM

One direct technique for multilingual recognition is to train a ’uni-
versal’ acoustic model, capable of recognizing all (relevant) lan-
guages. This approach holds the promise of helpful data sharing
between languages, and has been explored in various ways by many
researchers [10], including us [11]. It is also attractive for its ease
of maintainability (one model for all languages), but might require
fundamental decoder changes to accommodate large models while
maintaining low-latency characteristics.

The mixed model we report on here (’Mix’ below) was trained
by merging the training sets and phone sets of all three languages
(119 phones total). Pronunciations for each training word were ex-
tracted from the corresponding lexicon (or pronunciation engine).
Words appearing in several languages have pronunciations in sev-
eral languages. This results in an average of 1.3 pronunciations per
word, which is in line with the monolingual lexicons. The model
contains roughly 900K Gaussians, which is a little under the sum
of the number of Gaussians of the individual monolingual systems.
It runs roughly 2 times slower than the monolingual systems. Its
accuracy is summarized in Table 2.

System SACC (%)
En Fr Zh (Zh/En/Mix) Avg

Mix 41.6 39.8 32.6 (31.8/42.6/26.4) 38.0

Table 2. Mix system accuracy.

Despite our best attempts, we found it difficult to obtain high ac-
curacies with a single model approach [12]: the overall accuracy is
more than 10% worse than the monolingual baseline (38 vs 49.5%).
Again, this is a data-saturated environment, so pooling resources

does not compensate for data sparsity, and does not readily pro-
vide accuracy benefits. The exception is the English subset of the
Mandarin test set, which largely benefited from the added American
English training data (from 37.3 to 42.6% SACC).

We also trained a ’tagged’ system, where all phonemes and lex-
icon entries were tagged by their language ID (so there is little data
sharing), and measured an even lower overall accuracy: 36.9%.

5. LANGUAGE IDENTIFICATION

Language 
Identification

English
Recognizer

French
Recognizer

Mandarin
Recognizer

The next strategy we evaluated for multilingual recognition used
a language identification module to direct the utterance to the appro-
priate recognizer (called the ’LangId’ system below). The main ad-
vantage of this architecture is its simplicity and low computational
cost: it only inserts a relatively simple decision-making module in
the recognition flow. This module, however, would need to be very
low-latency, and most of the literature on this topic offers off-line, or
batch, solutions. Setting this issue aside, we evaluated the recogni-
tion accuracy that such an architecture could achieve.

For this experiment we used an implementation of the language
identification algorithm described in [8], which is a discriminative
extension to the popular MAP-SVM architecture widely used for
such tasks [9]. In MAP-SVM, a universal background Gaussian-
mixture model (UBM) is used to model each utterance as its maxi-
mum a posteriori departure from the UBM. The parameters of this
model are then stacked in a ’supervector’ that is classified by a vec-
tor support machine (SVM). The specific implementation used here
was previously validated on publicly available datasets.

Fig. 1. Language id EER as a function of the classifier training size.

We trained and optimized the language identification module
for En-Fr-Zh classification assuming equal priors for all three lan-
guages. Performance was estimated and optimized on the develop-
ment sets, and is reported in terms of equal error rate (EER). We
found that, even with fairly large amounts of UBM training data
(5M utterances total), performance saturated at ∼500 Gaussians.
The amount of SVM training data however seemed to have more
impact on classification performance (see Fig. 1). Since our SVM



implementation was not scalable, we compared the SVM to a Max-
imum Entropy (MaxEnt) module which is more readily parallelize-
able. Optimizing the UBM size and sweeping the MAP adaptation
parameter for increasing amounts of data, we found that by being
able to leverage more training data, MaxEnt outperformed our SVM
solution by ∼20%.

Nonetheless, the asymptotic EER remains fairly high (over
10%). This is due to the fact that our mobile recognition requests are
very short, on average 3.5 seconds (including non-speech frames).
Fig. 2 shows the EER distribution as a function of utterance length,
together with the distribution of utterance lengths over the dev set.
The EER decreases as the sentence length increases, but the mode
of the data is at ∼15% EER.

Fig. 2. Language id EER as a function of utterance length.

Applying the best language classifier to the trilingual recognition
task, we obtained an overall sentence accuracy of 43.5%, better than
the single multilingual system, but still much worse than the average
monolingual performance of 49.5% (see Table 3).

System SACC (%)
En Fr Zh (Zh/En/Mix) Avg

LangId 50.4 38.8 41.4 (42.5/32.9/29.5) 43.5
LangId (margin) 53.2 41.1 41.0 (42.4/30.1/26.2) 45.1
LangId (oracle) 60.5 46.2 41.9 (42.6/37.3/32.5) 49.5

Table 3. LangId system accuracies.

Following the approach proposed in [11] for system combina-
tion, we considered adding a margin to each language identification
score to compensate for possibly biased language decisions. Mar-
gins of 0.4, 0.4, 0.0 for En, Fr, Zh, respectively, helped increase the
overall system accuracy by 1.6% absolute. Further analysis showed
that the En and Fr margins helped roughly 5% of the test utterances
in each of these languages ’move’ from the Zh system to their own,
giving them a better chance of being correctly recognized. With mar-
gins, the LangId system remains 4.4% absolute worse than the av-
erage monolingual systems (45.1% when the language is estimated,
vs 49.5% when the language is known). There just aren’t enough
phones in an average utterance to estimate its language reliably.

6. SYSTEM COMBINATION

6.1. Combining 3 Monolingual Recognizers

Our work on trying to improve the recognition of English words in
Chinese systems [11, 12] taught us that a much easier path to multi-
lingual recognition is that of system combination. Using several rec-
ognizers and combining their outputs consistently outperforms any

English
Recognizer

French
Recognizer

Mandarin
Recognizer

Result 
Combination

single recognition system. This approach requires more run-time re-
sources since it performs multiple recognitions for each request, but
its latency is only bounded by the slowest model, which itself is lim-
ited by timeouts. We tested different flavors of this approach on our
trilingual task.

The first approach consists of simply comparing the confidence
scores of each monolingual recognizer, and choosing the highest-
confidence result. This alone resulted in a slightly better overall ac-
curacy than the LangId system (45.7 vs. 45.1%, see Table 4).

As with the LangId system, we tried applying a confidence mar-
gin to each recognizer. Margins of 0.2, 0.3, 0.0 increased the overall
accuracy by 1.2% absolute. As with the LangId system, the mar-
gins helped move En and Fr utterances off the Zh system, but this
only helped the French test set here, likely because the classifica-
tion criterion in this scenario was recognition confidence, and En
utterances with a high confidence score under the Zh system were
(almost) equally well recognized by the Zh than the En system.

Adding an extra constant to reinforce results where 2 recognizers
agree (third line in the table) didn’t help, except on the subset of
English queries in the Mandarin test set. This is expected since these
utterances can best benefit from recognition redundancy.

Finally, an SVM with Gaussian kernel was trained to choose the
best recognition result based on the recognizers confidence scores,
the output of a language identification system (running in parallel
with the speech recognizers), and additional recognition agreement
features (one per language pair). The SVM was trained on the dev
sets. This last system performed 1.7% absolute better than the best
confidence-based system (from 46.9 to 48.6%), 3.5% better than
the best LangId system (45.1%), 10.6% better than the Mix sys-
tem (38.0%), and only 0.9% worse than the monolingual systems
(49.5%). Also, it brought the accuracy on each individual test set
close to that of the monolingual recognizers, especially French.

Notice that an oracle system that would pick the best system
(from an accuracy viewpoint, not based on knowing the language
a priori) does surpass the monolingual accuracy (50.3% vs 49.5%),
indicating that the little bit of redundancy between the three systems
could possibly be further exploited, especially for English queries in
the Mandarin test set.

6.2. Combining 3 Monolingual and 1 Multilingual Recognizers

Although the Mix system has a relatively poor recognition accuracy,
it tends to make different errors than the monolingual systems, and it
offers redundancy with all three. It is thus not surprising that adding
it to the combination boosts the overall accuracy by 1.2% (from 48.6
to 49.8% with an SVM decision logic, see details in Table 5). With
the Mix system, the overall accuracy slightly surpasses that of the
monolingual systems. In oracle experiments where the best recog-
nizer is chosen, the Mix system brings 3.5% absolute improvement,
from 50.3 to 53.8% (though of course this is a slightly misleading as
it compares oracles with different number of input sources).

The Mix system seems to most help the French test set (37.0



System SACC (%)
En Fr Zh (Zh/En/Mix) Avg

En+Fr+Zh (conf) 58.0 37.0 42.1 (42.4/43.7/28.6) 45.7
En+Fr+Zh (conf+margin) 58.0 41.6 41.2 (41.9/39.9/22.1) 46.9
En+Fr+Zh (conf+margin+agree) 58.0 41.6 41.3 (41.9/40.5/22.1) 46.9
En+Fr+Zh (conf+agree+LangId,SVM) 58.9 44.9 42.1 (42.4/42.3/29.1) 48.6
En+Fr+Zh (oracle) 60.7 47.1 43.0 (42.6/51.4/32.6) 50.3

Table 4. Systems combination accuracies.

System SACC (%)
En Fr Zh (Zh/En/Mix) Avg

En+Fr+Zh+Mix (conf) 57.9 39.9 42.0 (42.0/45.6/30.1) 46.6
En+Fr+Zh+Mix (conf+margin) 57.8 42.4 41.5 (41.8/43.0/27.0) 47.3
En+Fr+Zh+Mix (conf+margin+agree) 59.0 44.3 42.4 (42.5/45.3/28.9) 48.5
En+Fr+Zh+Mix (conf+agree+LangId,SVM) 59.8 46.7 42.8 (42.8/46.9/31.7) 49.8
En+Fr+Zh+Mix (oracle) 63.4 51.5 46.4 (45.8/55.7/37.4) 53.8

Table 5. Systems combination accuracies, including the Mix recognizer.

to 39.9% without margin, 41.6 to 42.4% with margin). Indeed, we
found that, after application of margins, still 7% of the French test
set is recognized by the Mix system rather than the French system.

The agreement feature has a larger effect in this experiment
where more system redundancy can be exploited, contributing an
increase in overall system accuracy from 47.3 to 48.5%.

Incorporating language identification scores in the combination
increases the overall accuracy by 1.3%, from 48.5 to 49.8%, which
is slightly superior to the average performance of the monolingual
systems.

Overall, the system combination approach is scalable, accu-
rate, and fast. Simply using the monolingual models together with
language identification scores and some reasonable decision logic
brings the combined system close to monolingual accuracy. The in-
evitable accuracy loss due to inter-language confusions is not quite
compensated by exploiting the small redundancy that exists between
the underlying models, unless we also add to the combination a
multilingual model. However a ‘Mix’ multilingual recognizer must
overcome significant challenges related to size and scalability to
be helpful for different language configurations in a realtime envi-
ronment. Fortunately, performance is also very strong with purely
monolingual combinations.

7. CONCLUSION

We explored several architectures that could be implemented to help
multilingual speakers use speech recognition applications in the lan-
guages of their choice. We focused our study on a trilingual task of
English-French-Mandarin recognition for mobile applications. We
found that short speech requests make it difficult to rely on a lan-
guage identification system to pick the right recognizer, and that
large monolingual systems don’t perform nearly as well as the mono-
lingual systems when the language is known.

The most promising approach is to allow utterances to be recog-
nized in parallel by several systems, and combine the scores of these
systems with a classifier. A simple confidence voting scheme be-
tween three monolingual systems brought us closer to monolingual
accuracy than any system we previously evaluated, and adding other
easily-computed knowledge sources such as language ID scores
helped bridge most of remaining accuracy gap.

These results suggest that accurate multilingual automatic
speech recognition could be primarily a question of machines and
related support costs.
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