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ABSTRACT

Provisioning scarce resources among competing users and
jobs remains one of the primary challenges of operating
large-scale, distributed computing environments. Distributed
storage systems, in particular, typically rely on hard operator-
set quotas to control disk allocation and enforce isolation for
space and I/O bandwidth among disparate users. However,
users and operators are very poor at predicting future re-
quirements and, as a result, tend to over-provision grossly.

For three years, we collected detailed usage information
for data stored in distributed filesystems in a large private
cloud spanning dozens of clusters on multiple continents.
Specifically, we measured the disk space usage, I/O rate,
and age of stored data for thousands of different engineering
users and teams. We find that although the individual time
series often have non-stable usage trends, regional aggrega-
tions, user classification, and ensemble forecasting methods
can be combined to provide a more accurate prediction of
future use for the majority of users.

We applied this methodology for the storage users in one
geographic region and back-tested these techniques over the
past three years to compare our forecasts against actual us-
age. We find that by classifying a small subset of users
with unforecastable trend changes due to known product
launches, we can generate three-month out forecasts with
mean absolute errors of less than 12%. This compares fa-
vorably to the amount of allocated but unused quota that is
generally wasted with manual operator-set quotas.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; K.6
[Management of Computing and Information Sys-
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tems]: Installation Management—Computing equipment man-

agement, performance and usage measurement

General Terms

Management, Measurement
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1. INTRODUCTION
Storage providers in a cloud environment may serve thou-

sands of users and groups of users with widely varying re-
quirements generally using a distributed storage system such
as GFS [8] and Bigtable [5]. Each user’s requirements are
a complex combination of capacity, I/O bandwidth, seeks,
and caching capacity for hot data, and the storage provider
must plan in advance so that the users receive adequate lev-
els of capacity and isolation. The time horizon for making
such provisioning decisions can range from weeks, when the
capacity can be provided by rearranging existing loads, to
months if new hardware must be ordered and integrated, to
years if entirely new datacenters are to be set up.

Conventionally, provisioning is done based on per-user
quotas with the aggregated demand of these quotas used to
inform purchasing decisions for additional capacity. While
alternative mechanisms for provisioning and allocating stor-
age quota have been proposed [14], they are not in widespread
use. However, users and operators are very poor at predict-
ing future requirements. Generally, operators collect esti-
mates from at least the large users, and aggregate them. For
safety, both the users and the operators may add headroom
over these estimates, leading to gross over-provisioning.

To see if the storage requirements could be predicted auto-
matically, we studied usage information collected over three
years on data stored in distributed filesystems in a large
private cloud spanning dozens of clusters on multiple con-
tinents. We recorded storage quota allocated and actual
usage of storage, as well as I/O rates and the age distribu-
tion of data stored by thousands of users and engineering
groups. Analysis of the trends in the data shows that the
usage of individual users and groups is hard to predict, since



they often have time-varying trends. The aggregate usage is
easier to predict. We applied a combination of user classifi-
cation, aggregation, and ensemble forecasting methods, and
found that the resulting predictions were considerably more
accurate than the operator-assigned quotas.

The rest of the paper is organized as follows. Section 2
describes related work on cloud capacity planning. Section 3
characterizes the storage usage patterns across a large pri-
vate cloud. Specifically, storage usage, I/O usage, and the
age and hotness of data are quantified. Section 4 describes
techniques to aggregate users across clusters and classify
those with abrupt trend changes. Section 5 describes our
ensemble forecasting methodology applied to the aggrega-
tions created in the previous section. Section 6 applies these
aggregation and forecasting methods to a collection of clus-
ters in a single geographic region across three storage usage
dimensions. Section 7 summarizes our results and considers
the meanings of the findings.

2. RELATED WORK
Agrawal, et al. [1] collected snapshots of filesystem meta-

data from a large fleet of corporate desktops and studied the
temporal changes in file size, file age, and other character-
istics. The characteristics of the cloud storage environment
studied here are significantly different from the corporate
desktops studied in that work. Allspaw [2] characterizes
some of the practical operational challenges of a cloud en-
vironment, but does not attempt more advanced method-
ologies beyond regressions of an observed trend to generate
more accurate predictions. There has been a lot of work on
resource provisioning, right-sizing, and performance predic-
tion of individual MapReduce jobs [15], but techniques for
dynamic scheduling are orthogonal to longer-term capacity
planning. Menascé and Ngo [10] explore some of the impli-
cations of capacity planning from the point of view of the
cloud provider, but their work focuses more on provisioning
user needs with existing resources as opposed to forecast-
ing future trends. Loboz [9] finds the distribution of storage
needs in a large cloud environment to be highly imbalanced
and suggests that traditional approaches to forecasting and
capacity planning need to be reconsidered. Mishra, et al. [11]
describe the importance of splitting up tasks in a cloud com-
puting cluster into a small number of groups that can be
forecast separately, but they do not provide any forecast-
ing methodology. Our work is most similar to the work of
Loboz and Mishra, however, we are working with a much
larger number of clusters and focus on aggregation and fore-
casting techniques to provide accurate predictions of future
storage needs.

3. CHARACTERIZING DISK USAGE IN A

LARGE PRIVATE CLOUD
We studied the storage usage patterns across a large pri-

vate cloud (we call it the fleet) comprised of tens of storage
clusters and thousands of users (internal engineers or engi-
neering teams). We define a storage installation as a unique
tuple of user and cluster. For example, if user A stores data
on clusters X, Y , and Z, then AX , AY , and AZ are three
unique storage installations for that user. We group clus-
ters together at multiple aggregation levels for provisioning
purposes. We define a region as a grouping of two or more
clusters in the same geographic area.
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Figure 1: Cumulative distribution functions of the
disk space used by storage installations in 3 regions,
and Zipf’s law approximations drawn with dotted
lines, fitted to the first 80% of disk usage.

The data presented in this section was collected by a
fleetwide storage monitoring system. Large numbers of time
series are collected from each server in the fleet, but only a
few relevant storage usage time series are considered here.
These time series were loaded into R [12] for aggregation,
cleaning, statistical analysis and final graph generation.

3.1 Storage Capacity
In the fleet, the large majority of the storage belongs to a

small fraction of the installations. Figure 1 shows the CDFs
of space used by installations in three regions. The CDFs
appear to have two components: a smooth portion (on a
semi-log scale), followed by a bend. The smooth portion ap-
proximately follows Zipf’s law “usage(rank) = c

ranks
”, with

exponent s between 0.37 and 1.06 depending on the region,
and 0.68 fleetwide. The bend means that small users use
even less space than what the law would predict given their
rank. The bend occurs above 80% of disk usage, so most
of the space is used by installations that follow Zipf’s law.
Depending on the region, the top 20 to 90 installations ac-
count for 90% of the space used, thus the majority of users
have little impact on the provisioning process.

In addition to differences in total magnitude of data
stored, individual users exhibit significant variation in tem-
poral trends, which creates challenges for forecasting future
usage. Figure 2 shows four representative patterns we have
observed in the storage usage growth rates. The first row
(a) of three time series represents individual users with a
linear growth rate. Specifically, these time series fit a linear
model with an R

2 value greater than 0.99. The second row
(b) of time series represents individual users that fit an ex-
ponential growth rate with an R

2 value of greater than 0.99.
The third row (c) represents user time series with a signif-
icant autocorrelation at the 7-day lag. The fourth row (d)
shows some of the regime changes and step functions that
can make forecasting particularly challenging.

There are tens of thousands of user storage time series
which have similar characteristics to the exemplars shown.
For example, many new products initially experience expo-
nential growth. Also, many products or services have a built-
in periodicity or day-of-week effect that may cause visible
changes in the storage space used on lower level distributed



Oct Nov Dec

(a)

Oct Nov Dec Sep Oct Nov Dec

Sep Oct Nov Dec

(b)

Oct Nov Dec Oct Nov Dec

Nov Dec

(c)

Oct Nov Dec Sep Oct Nov Dec

Sep Oct Nov Dec

(d)

Jul Sep Nov Sep Oct Nov Dec

Figure 2: Example storage usage time series from
the fleet showing (a) linear growth (b) exponential
growth (c) periodicity and (d) regime changes.

filesystems. Other periodic variations may be caused by
user behaviors, such as more uploads of YouTube videos or
Picasa pictures on Sundays and major holidays. Yet other
user storage time series show irregular behavior, as in Fig-
ure 2(d), from a combination of usage changes, automated
clean-up mechanisms, and manual intervention when indi-
vidual quota limits are about to be reached.

3.2 I/O Bandwidth
The I/O bandwidth across storage installations follows a

similar trend as storage capacity. Figure 3 shows the CDFs
of 1-day-average read rates of individual internal users for
the same three regions as in Figure 1. Depending on the
region, the top 50-90 installations account for 90% of the
total read rate.

We cannot assume that I/O rates are simply proportional
to the disk space used because for any given installation
those two variables are not very correlated. In fact, many
teams often read and write data owned by a different ac-
count. In the fleet, we observe that 25% of disk space is used
by installations that don’t read anything. For the remain-
ing installations, Figure 4 shows the relationship between
disk space used and 1-day-average read rates. Data points
toward the top-left correspond to “hot users”with compara-
tively large I/O, while points at the bottom-right correspond
to “cold users” with comparatively low I/O.

3.3 Age and Hotness of Data
Separately from the total amount of data stored, it is also

important to characterize the amount of hot data, since data
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Figure 3: Cumulative distribution function of the
average read rate of storage installations in 3 re-
gions.
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Figure 4: Heatmap of the number of storage instal-
lations as a function of disk space used and average
read rate. The color intensity of each small rectan-
gle corresponds to the count of installations that fall
in that particular range.

that is actively accessed places different demands on the
storage system. For example, the amount of hot data may
influence the amount of memory required for caching, or the
amount of flash in a hybrid flash-disk storage system.

However, hot data is hard to track directly; we instead
track the amount of data that was modified recently, or
young data. The hypothesis is that younger data is accessed
more frequently. To test this hypothesis, we look at the
fraction of reads directed at the youngest data.

For a representative subset of the storage installations,
Figure 5 shows how old the data is, and how file age affects
the hotness of the data. It gives read operations by file
age, file counts by file age, and bytes stored by file age. As
the read operations line indicates, in our fleet, a very large
fraction of reads are directed to very young data: 30% of
reads go to data under 6 hours old, and almost no reads go
to data over a week old. The fraction of data that is under
6 hours of age is much smaller than the fraction of the files
of that age, which indicates that there is a larger fraction of
small files among the young data than overall, but they do
not survive beyond a few weeks.

Combining data size and read information tells us that the
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Figure 6: The fraction of read operations for a given
fraction of the youngest data.

vast majority of reads are directed at a very small fraction
of the data. Figure 6 shows the fraction of reads directed to
a given fraction of the youngest data. For example, 50% of
all read operations go to the 10% of the data that was most
recently written. The newer the data is, the more often it
is accessed by read operations. For the purpose of designing
a caching system for the hot data, we conclude that it is
adequate to estimate the amount of young data — say, data
that is less than a week old.

4. MAKING STORAGE REQUIREMENTS

FORECASTABLE
The variation observed in the storage time series (Fig-

ure 2) described in the previous section is the primary chal-
lenge in forecasting storage requirements. Many time se-
ries exhibit abrupt trend changes, step functions, periodic-
ity, and significantly different growth rates. The remainder
of this section describes aggregation and classification tech-
niques to generate smoother time series for forecasting.

4.1 Aggregation by Region and User
In this section we study two specific aggregations by re-

gion and by user, and in the following section we describe a
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Figure 7: Regional space usage over time showing
the impact of a single new large user (“A”) affecting
the aggregate trend line.

clustering methodology to produce additional aggregations
more amenable to forecasting. Aggregating usage by region
is useful for forecasting because users can relatively easily be
relocated to a different storage cluster within the same re-
gion. Aggregating by user across multiple storage clusters is
useful because, in some cases, the user has simply switched
to using a different storage cluster (perhaps due to capac-
ity constraints), and hence the per-installation usage trend
changes abruptly, but the aggregate usage trend does not.

Figure 7 shows usage in a single geographic region bro-
ken down by users across all clusters in that region. The
aggregate usage pattern for the region is smoother than the
individual patterns, but still has a large trend change in
2011. One of the largest users, User A, began storing data
in mid-2011 and was responsible for a large part of the trend
change of the total storage usage for the region. The regional
aggregate becomes smoother with this outlier removed. This
example underscores the importance of separating out users
with large changes in the usage trend.

4.2 Incorporating User Signals
While we have argued that users are generally poor at pre-

dicting their future requirements, input from users can be
quite helpful — and sometimes critical — in making provi-
sioning decisions. For example, when a new product launch
is planned, the user probably knows that additional storage
capacity will be required, and this increase cannot otherwise
be predicted by considering only the historical usage.

Quota requests are often used in the cloud to provide a
signal to the operators about future resource needs; once
granted, quotas also serve to assure users that the resources
will indeed be available. In our fleet, installations are cur-
rently required to purchase quota if they use or plan to use
more than a threshold amount of disk space. Figure 8 com-
pares cumulative quota relative to the cumulative disk space
used in those installations. We find that in aggregate, users
use only 55% of the quota they purchase. However, large
users are better at predicting how much storage they need
than smaller users: the top 10 quota requesters use 69%
of their quota. Since large users also have a disproportion-
ate impact on aggregate trends, we can use quota requests
from large users who are expecting significant changes to
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Figure 8: Cumulative distribution functions of quota
and disk usage for 1144 installations currently re-
quired to get quota.

their storage requirements to improve the accuracy of our
forecasts. Therefore, our goal is to automatically identify
a small subset of users and require them to use traditional
planning tools. These inputs provide an additional signal to
our forecasting methods.

There are two general characteristics of storage users who
may have an adverse impact on the predictability of the
aggregate trend:

1. Users storing a large aggregate amount of data.

2. Users whose usage has been unpredictable in the past.

We want to select only the users for which both of these
conditions hold. Fortunately, as we showed in Section 3.1,
the first criterion applies to only a small number of the users,
and they account for the majority of the usage.

For the second criterion, we propose a procedure where
individual forecasts are prepared for the large users, and
only users whose past usage has been unpredictable, or who
expect their capacity requirements to differ from this pre-
diction by more than a threshold percentage, are required
to file a quota request. These users can then be provisioned
for manually, or the quota request signals can be incorpo-
rated directly into the forecasts using multivariate regression
models on the signaling time series. We define a user as hav-
ing an unpredictable usage pattern if the forecast error (see
Section 5.3) observed in the past exceeds 60%. Back-testing
over the largest 70 users in the fleet, we found that 12% of
the users were unpredictable for 1 month predictions and
22% for 6 month predictions. We use the high 60% unpre-
dictability threshold to minimize the number of users who
need to file quota requests, and also because we found that
including users in the regional aggregate generally improves
its predictability unless the user has an extremely unpre-
dictable usage pattern. In the example shown in Figure 7,
using the 60% threshold only marked one user as unpre-
dictable.

One weakness of this proposal is that it requires constant
enforcement to ensure the largest users are filing accurate
capacity plans in instances where they start to exceed their
forecast usage. To combat this, we also seek to make our
forecasting methodology as responsive as possible to abrupt
trend changes, as described in the next section.

5. FORECASTING METHODS
The second challenge in forecasting these storage require-

ments lies in the difficulty in finding a single statistical model
to capture all of the different types of growth in a large cloud
environment. Even after the aggregations described in the
previous section, we may still have many hundreds of time
series across different clusters or geographic regions that will
need to be forecast accurately with minimal human inter-
vention. Traditional statistical forecasting methods would
need to be tuned for the growth patterns in each case. For
example, some time series exhibit linear growth, others ex-
ponential, and others may have a seasonal component. We
address this challenge with an ensemble forecasting method-
ology that enables us to build a robust model across a large
number of time series with minimal manual parameter tun-
ing.

In the next three subsections we provide a high-level over-
view of our forecasting methodology.

5.1 Ensemble Methods
Instead of fine-tuning a single model which suits a par-

ticular application, we generate forecasts by averaging an
ensemble of forecasts from different models ([13], [3], [4],
[6]). Averaging out the various errors from individual mod-
els yields variance reduction and robustness. While this
methodology might not provide the best forecast for every
single user, it consistently produces adequate forecasts for
hundreds of aggregated disk usage time series, where human
intervention would be impractical. The ensemble combines
several different statistical models, including linear and ex-
ponential regressions, autoregressive integrated moving av-
erage (ARIMA) models, and Bayesian structural time series
models [7]. The individual forecasts from these methods
can be weighted in different ways according to accuracy and
aggregated to form the final forecast. We use a two-step
aggregation method designed to be robust to outliers and
poorly tuned models in the ensemble. In the first step, we
exclude forecasts that are three or more standard deviations
away from the ensemble mean. In the second step, we aver-
age the remaining forecasts that have z-scores between -0.85
and 0.85 at each time point (corresponding to the 20th and
80th percentiles of the Standard Normal Distribution). This
ensures that when given a set of forecasts that are skewed in
one direction, we exclude only those in the tail as opposed
to equally removing forecasts from both directions as would
be the case with a simple trimmed mean.

5.2 Tuning the Training Period
One of the key observations in our storage usage data is

that these time series often exhibit significant trend changes.
This is visible in the individual user time series of Figure 2(d)
as well as the regional aggregate time series of Figure 7.
These trend changes adversely affect forecast accuracy, es-
pecially when we try to forecast six months or more into the
future to allow provisioning of new servers or full datacen-
ters. Our simple solution to this problem is to try to avoid
using the trend change points when possible. For each fore-
cast date, we use a 1 month validation period and a variable
training period, as shown in Figure 9. In order to find the
best training period, we start with a 1-month long training
period and slide the training set begin date backward (in
increments of 1 month) until a 6-month long training period
is reached. Starting with the shortest training period, we
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Figure 9: Tuning the forecast training period and
forecast back-testing.

MAPE
t (%) R1 R2 R3 R4 Average

0 11.8 13.9 22.1 33.2 28.0
10 11.2 13.9 22.0 31.9 27.3
20 11.3 13.7 21.9 33.0 27.2
50 12.4 14.3 22.2 34.1 25.8
100 13.3 14.4 22.2 34.8 26.7
∞ 21.5 16.6 25.8 38.1 31.1

Table 1: Sensitivity analysis for the tuning threshold
parameter.

calculate the mean absolute percentage error (MAPE) over
the fixed validation set and repeat this process for the incre-
mentally increasing training windows. Sliding the training
set begin date backward increases the training set length
and if there are no trend changes in the data, this will usu-
ally result in lower forecasting errors. In this scenario, if
despite increasing the training set length, the forecasting er-
ror increases by more than t = 10%, we infer that we have
started including training data from a period before a trend
change. Therefore, we decide to cut the training set at the
previous shorter training window to only train on data after
the trend change. The selected training period is then used
to forecast the unknown future requirements. We find that
this tuning method limits the impact of trend changes on
the accuracy of the forecast.

Sensitivity analysis

To determine the sensitivity of this approach to the parame-
ter t, we examine the above method with different threshold
values and measure MAPE for several representative time
series using the back-testing method described in the next
section. Table 1 shows the results of five different possi-
ble values for t along with the case when no tuning is per-
formed and a fixed 6-month long training period is consid-
ered (t = ∞). The analysis is performed for several re-
gions (four of which are shown). We also report the average
MAPE values (taken over all the regions) for different val-
ues of the threshold parameter. We observe that tuning the
training period results in substantially smaller forecasting
error. This is observed consistently over all the regions. Av-
eraging over all the regions, a threshold parameter in the
range of 10% ≤ t ≤ 50% results in lowest values for MAPE.
Furthermore, the algorithm is robust to small changes in the
threshold value. The results in section 6.1 are obtained by
applying the above methodology to region R1 using t = 10%.

5.3 Evaluation and Risk Analysis
To evaluate our forecasting methodology, we back-tested

each week over the last two years to calculate what our best
projection would have been at that point in time and com-
pared that to the actual usage 3 months later. To do this,
we perform 1-month and 3-month out forecasts for each data
point in the time series. We start from the end of the time
series and go backward until there is not enough data left
to perform the above methodology. We then calculate the
MAPE over each forecast set and use it as a measure of
forecast accuracy.

In practice, an extra buffer is added to the forecast value
to decrease the risk of capacity shortage. To quantify this
risk, we calculate the probability of capacity shortage for
different values of added buffer based on historical trends.
This probability is computed by measuring the number of
times the sum of the forecast and the added buffer is below
the actual usage value. In particular, we measure the min-
imum buffer needed such that the risk of capacity shortage
drops to less than 1% for a 1-month horizon, below 5% for a
3-month horizon, and below 25% for a 6-month horizon. In
this context, a better forecast results in a lower extra buffer
required to limit the capacity shortage risk, and hence a
more efficient resource allocation scheme.

6. CASE STUDY
In this section, we use the methodology just described to

forecast the three dimensions of disk usage characterized in
Section 3. Specifically, we forecast disk usage, I/O usage,
and the growth of hot / recent data for the datacenters in
a single geographic region. We evaluate the methodology
by back-testing for each week over the period for which we
have data. We calculate 1-month, 3-month and 6-month
forecasts, and compute the MAPE with actual usage.

6.1 Forecasting Regional Space Usage
We forecast space usage across multiple time horizons.

Short term forecasts can be useful for operational decisions
about data migration, and longer term forecasts can be use-
ful for influencing purchasing decisions for new storage hard-
ware. As we showed in earlier sections, many individual user
time series are not forecastable, but the aggregation of all
users across clusters in a given region follows a much more
stable trend. Figure 10 shows how our aggregation, classifi-
cation, and forecasting methodology worked by back-testing
this procedure over the previous three years and comparing
against the actual observations. We also include a 6-month
out linear regression forecast for comparison purposes.

Table 2 breaks out the MAPE we measured. Although
forecasts of 6 months or longer in duration still have a high
degree of uncertainty, forecast errors are nevertheless lower
than the amount of allocated but unused quota. Further-
more, using the classification methodology to identify large
users with unstable trends and requiring them to file manual
capacity plans improved the region-level forecast in 1-month
and 3-month horizons. In this case, only one user needed to
file a plan.

Figure 11 presents the risk analysis for the same region for
1-month, 3-month, and 6-month provisioning using our fore-
casting methodology. As we expect, for shorter horizons the
forecasts are more accurate and therefore, less extra buffer
is required to ensure a low (e.g., 1%) risk of capacity short-



MAPE
Data 3m forecast 1m forecast

Regional total 13.2 6.5
Region - User “A” 12.3 4.4

Table 2: 3-month and 1-month out forecast errors
for Region and Region excluding User “A”.

2010 2011 2012

Date

Quota

Actual usage (weekly average)

Tuned ensemble 6m out forecast

Linear 6m out forecast

Figure 10: Regional forecast (region R1): our pro-
posed forecasting method is more accurate than the
conventional linear forecast and results in a more
efficient capacity planning compared to quota-based
planning.

age. As the forecasting horizon increases, the amount of
such buffer increases as well. For our target of 25% risk for
a 6-month horizon and 5% for a 3-month horizon, we needed
a buffer of about 33% over the forecast.

6.2 Forecasting Regional I/O Usage
To test the effectiveness of our forecasting methods, we

also evaluated the technique against the I/O usage time se-
ries characterized in Section 3.2. Like available disk space,
I/O bandwidth is an important dimension of disk capac-
ity. Accurate forecasts of future I/O requirements can be
used to migrate workloads optimally to take advantage of
the predicted future capacity.

Figure 12 shows the historical mean daily aggregate I/O
rate observed in a cluster across the last four months. The
first plot shows three peaks, and the second plot shows the
single user responsible for those peaks as found by the filter-
ing methodology described earlier. The final plot shows the
result of removing this single unpredictable user from the
aggregate; the series is clearly smoother. We back-tested
our forecasting methodology with and without this user in
the aggregate, generating 7-day forecasts using the prior 14
days of history. Excluding the user with the unstable usage
trend improved the MAPE of our forecasts from 15.2% to
13.4%.

6.3 Forecasting Recent Data
Finally, we test this methodology on the time series of data

age that was introduced in Section 3.3. Figure 13 shows the
time series of the total amount of data stored in a represen-
tative cluster over the last year and the time series of the
amount of data that is less than seven days old over the same
time period. Each line is accompanied by the best forecast
value for that point in time given the available data 30 days
prior. The forecast MAPEs are 13% and 14% for the last
year.
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Figure 11: Risk/Buffer analysis for 1-month, 3-
month and 6-month provisioning.

Figure 12: (1) the regional I/O usage, (2) a single
user responsible for large periodic spikes in usage,
and (3) the smoother trend of all remaining users.

7. CONCLUSION
We proposed an alternative methodology for provisioning

storage resources in a large cloud-computing environment.
This methodology involves aggregating small users together,
classifying users based on their trend changes, and using en-
semble forecasting methods to provide accurate predictions
of future use for the majority of users.

Our preliminary experiments show that our proposed
method results in substantially better predictions of future
usage than relying on manual operator-set quotas. As with
all forecasting methodologies, accuracy is particularly sensi-
tive to the length of training data and the forecast time hori-
zon. For long-term predictions to be safe (i.e., have a low
chance of under-provisioning), we need to add a substantial
buffer over the predictions, but the resulting provisioning is
still considerably leaner than using quotas, and the proposed
method requires very little manual effort.
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Figure 13: Time series of data stored and recent
(< 7 days) data stored along with the back-tested
30-day forecast values for a representative cluster.
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