
Upward Max Min Fairness

Emilie Danna§, Avinatan Hassidim∗, Haim Kaplan∗†, Alok Kumar§, Yishay Mansour∗†, Danny Raz∗‡, Michal Segalov∗

∗Google, Inc. Israel R&D Center
§Google, Inc. Mountain View, USA

†Tel Aviv University
‡Technion, Israel

{edanna, avinatan, haimk, kumaralok, mansour, msegalov, razdan}@google.com

Abstract—Often one would like to allocate shared resources in
a fair way. A common and well studied notion of fairness is Max-

Min Fairness, where we first maximize the smallest allocation,
and subject to that the second smallest, and so on. We consider
a networking application where multiple commodities compete
over the capacity of a network. In our setting each commodity
has multiple possible paths to route its demand (for example,
a network using MPLS tunneling). In this setting, the only
known way of finding a max-min fair allocation requires an
iterative solution of multiple linear programs. Such an approach,
although polynomial time, scales badly with the size of the
network, the number of demands, and the number of paths.
More importantly, a network operator has limited control and
understanding of the inner working of the algorithm. Finally, this
approach is inherently centralized and cannot be implemented
via a distributed protocol.

In this paper we introduce Upward Max-Min Fairness, a
novel relaxation of Max-Min Fairness and present a family of
simple dynamics that converge to it. These dynamics can be
implemented in a distributed manner. Moreover, we present an
efficient combinatorial algorithm for finding an upward max-min
fair allocation. This algorithm is a natural extension of the well
known Water Filling Algorithm for a multiple path setting.

We test the expected behavior of this new algorithm and show
that on realistic networks upward max-min fair allocations are
comparable to the max-min fair allocations both in fairness and
in network utilization.

I. INTRODUCTION

The allocation of global shared resources to different users

is a fundamental problem in distributed computing and net-

working. A well accepted hypothesis is that network resources

belong to the community and thus should be shared in a fair

way among all users. This is considered by many to be the

basic philosophy behind the congestion control mechanism of

TCP, which is one of the most important technical building

blocks of the Internet and a major contributor to its success.

In general, the notion of fairness is wide and covers many

specific allocation strategies. When there is only one resource

from which all users can benefit equally, then a fair allocation

will allocate an equal portion of the resource to each user

(up to its demand). However, in many realistic scenarios, the

situation is more complex. Consider for example a traffic

engineering setting where the goal is to route traffic of many

commodities using the available (shared) network capacity. In

this case, providing each commodity with an equal share of

the capacity of each link does not make sense anymore. Such

allocation will cause substantial waste of resources since the

amount of flow that a commodity can send along a path p is

determined by its smallest allocation on an edge along p.
The goal is to allocate the common resources (such as

network capacity) in a fair way while utilizing them as much

as possible. This gives rise to what is known as the “Water Fill-

ing” algorithm (Waterfill) [3]. Assume that each commodity

has a single path connecting its source to its destination, which

is indeed the case in networking settings where the routing is

determined by the network layer (IP) protocol, see e.g., [10].

When we start all commodities are active. We increase the

flow of all commodities equally until the first link (or links) in

the network becomes saturated.1 Then, all commodities whose

path contains this saturated link cannot utilize any additional

allocation and we deactivate them. We continue increasing

all active commodities equally until another link (or a set of

links) gets saturated, deactivate the relevant commodities and

continue until no active commodity remain.

The outcome of the Waterfill algorithm, in the single path

traffic engineering setting, is what is known as a max-min fair

solution (max-min fair multicommodity flow in our case) [3].

It is not hard to see that in such a max-min fair multicommod-

ity flow we cannot increase the flow of any commodity without

decreasing the flow of commodities with equal or less flow.

In fact, it is common to define an allocation to be max-min

fair if in order to increase the amount allocated to one user

we have to decrease the amount allocated to a user which gets

an equal or less amount. In other words, a multicommodity

flow is max-min fair if the sorted vector of flow values is the

lexicographically largest feasible sorted vector of flow values.

This vector is known to be unique [3].

This centralized Waterfill algorithm can be replaced by

simple distributed dynamic in which each commodity checks

if it can increase its value while only decreasing the values of

commodities with strictly larger values. If this is indeed the

case, the dynamic performs the change. This simple dynamic

is guaranteed to converge to the max-min fair solution [1].

When traffic can be sent along multiple paths between the

source and the destination, the situation become much more

complex. This is the case in many practical traffic engineering

scenarios, where ISPs are using multiple paths (for example

1A link is saturated if the total flow through it equals its capacity

2

using MPLS tunneling) to achieve better load balancing and

to increase the overall throughput and utilization of their

networks. In such a setting, the vector of flow values is no

longer sufficient to uniquely describe the load on each link

since the flow of commodity i can be split in different ways

among the different paths that commodity i uses. However,

even when we have multiple paths we can still define a max-

min fair multicommodity flow to be one with the largest

lexicographically sorted vector of flow values among all sorted

vectors of flow values of feasible flows. This vector is unique,

but there may be more than one multicommodity flow that is

represented by this vector.

One can extend the distributed dynamic we described earlier

to the case when there is more than one path per commodity. In

this case, we will allow a commodity to increase its flow value

along a path p, if it can do so by decreasing only commodities

of strictly larger flow value, along paths p′ intersecting p. Note
that we compare the total value of a commodity (over all its

paths) rather than its value on the paths p′ intersecting p. It
is clear that each such an update operation locally improves

fairness. There are two basic intriguing questions regarding

this dynamic for the multiple paths setting:

(1) Does the dynamic always converge? and

(2) In case it does converge, does it converge to a max-min

fair allocation ?

In this paper we show that, under mild assumptions, such a

dynamic always converges, but unfortunately not necessarily to

a max-min fair multicommodity flow. The dynamic converges

to a fairness notion which we call Upward Max-Min Fair

(UMMF), which has many intuitive fairness guarantees.

A. Our contribution

I. UMMF - A new notion of fairness. We define a multicom-

modity flow to be Upward Max-Min Fair (UMMF), if for each

i, we cannot increase the value of the ith smallest commodity,

along any of its paths, even if we remove all commodities

whose value is strictly larger than the ith smallest value. (This

implies that if we reach an UMMF then the dynamic described

earlier terminates.)

At a first glance this definition may look like the traditional

definition of max-min fair multicommodity flow stated in

terms of flows rather than flow values. However, there is a

very important subtle difference between the two definitions.

In UMMF the requirement is that we cannot increase the ith
largest commodity while fixing the current flow routing of

the smaller or equal commodities. In the traditional definition

the requirement is stronger: the flow is max-min fair if we

cannot increase the ith largest flow value for any allocation

that achieves the maximal values for the smaller or equal

commodities. For example, if we can reroute the commodities

with value smaller than or equal the ith largest so that the

ith largest commodity increases then the flow would not be

max-min fair but it may be upward man-min fair. It is clear

that any max-min fair multicommodity flow is also upward

max-min fair multicommodity flow, but not vice versa. To

better distinguish between the two notions we shall refer to the

traditional stronger notion as a Global Max-Min Fair (GMMF)

multicommodity flow.

The example in Figure 1 highlights the differences between

UMMF and GMMF. In this example the only global max-

min fair flow is the one with (1, 1) as the vector of sorted

values. On the other hand, there are many different UMMF

flows with different vectors of sorted values. In fact, for every

0 ≤ α ≤ 0.5 if flow i (for i ∈ {1, 2}) routes α flow units on

the path siABCti and 1 − 2α flow units on the other path,

then the resulting multicommodity flow is UMMF. This holds

since the flow is maximal (no flow on a single path can be

increased) and both commodities have the same flow value.

The example can be extended to show that the UMMF can

have a total flow which is a factor of O(n) from the GMMF,

where n is the number of nodes.

BA

C

s1

t2

t1

s2

Fig. 1. In this example P1 = {(s1ABt1), (s1ABCt1)} and P2 =
{(s2, BCt2), (s2ABCt2) }

As indicated by this simple example, a UMMF multi-

commodity flow is not unique. However, every UMMF flow

is “fair” in a sense similar to the one by which GMMF

multicommodity flows are fair: to increase a commodity along

a path we have to change the allocation of equal or smaller

commodities. To further argue that UMMF multicommodity

flow is a natural concept, consider the case where there is only

one commodity. In this case any maximal flow (sometimes also

called blocking flow) is UMMF.2 On the other hand only a

maximum flow is GMMF. The notion of blocking flow is well

known, and can be computed faster than a maximum flow (in

fact computing a blocking flow is an essential step in Dinic’s

maximum flow algorithm. [4]).

II. Distributed Dynamics. We give a set of simple conditions

such that any dynamics obeying these conditions converge to

a UMMF multicommodity flow. At a high level all one has

to do is to pick a commodity and increase its allocation while

decreasing the allocation of larger commodities. If we keep

the value of the commodity that increases smaller than the

value of those that decrease then we prevent oscillations and

guarantee convergence.

III. Generalized Waferfill Algorithm. The Waterfill algo-

rithm described earlier is a classical simple algorithm to

compute the max-min fair multicommodity flow in the case

of a single path per commodity.

2A blocking flow is a flow which we cannot increase with rerouting some
part of it.

3

We suggest a natural extension of the Waterfill algorithm,

Iterative Exhaustive WaterFill (IEWF), for the case of multiple

paths per commodity and show that it converges to an UMMF

multicommodity flow. This, in fact, reinforces our claim that

the notion of UMMF multicommodity flow is a natural one.

In addition to the the fact that an UMMF flow can be

computed in a simple distributed manner, there is also an

important computational benefit gained by the introduction of

UMMF and the associated dynamics. Unfortunately, there is

no combinatorial algorithm to find a max-min fair solution

when there are multiple possible paths per commodity. Finding

one is a challenging open problem. Still, it is possible to

find a max-min fair flow by solving multiple linear programs,

at least one to discover every flow value [8]. Although it

runs in polynomial time, it scales badly with the size of the

network, the number of demands, and the number of paths

(all cause the LP to grow). Furthermore, a network operator

has limited control and understanding of the inner working

of the algorithm, and the network has to switch from one

allocation to another allocation in a synchronized way. Such

an implementation may also be unstable in the sense that

changing slightly the capacities or the demands may have a

large affect on the solution.

III. Experimental study. We performed an experimental

study to check various properties of UMMF multicommod-

ity flows and the IEWF algorithm: We conducted our tests

on the Google backbone network and on random networks

drawn using Waxman’s model [11], [12]. We compared the

GMMF multicommodity flow to a UMMF multicommodity

flow obtained after 2, 10, and 50 iterations of IEWF. All our

measurements indicate that the quality, in terms of fairness

and throughput, of the UMMF flow which we obtain (even

after 2 iterations and definitely after 10) is close to the quality

of the GMMF flow.

We investigated the affect of the initial splits on the quality

of the UMMF flow and the rate of convergence. We compared

several natural choices of initial splits and indicate the ones

that give the best performance. We also compared how sen-

sitive are the GMMF and UMMF multicommodity flows to

small changes of the inputs. Our results show that the UMMF

flow is much more robust.

II. UPWARD MAX-MIN FAIR FLOW

We are given a directed graph G = (V,E), where each edge
e ∈ E has a capacity constraint c(e) > 0.
A multicommodity flow problem, has k tuples (si, ti, Pi),

for 1 ≤ i ≤ k, one per commodity, where si is the source of

commodity i, ti is the destination of commodity i, and Pi is

a subset of simple paths from si to ti which commodity i can
use. (Note that Pi can be potentially all paths connecting si
to ti.)
A flow fi of commodity i associates a value fi(p) ≥ 0 with

each path p ∈ Pi. The value of fi is v(fi) =
∑

p∈Pi
fi(p).

A multicommodity flow F is a vector (f1, f2, . . . , fk) of flows
fi, 1 ≤ i ≤ k. The multicommodity flow is feasible if for

every edge e ∈ E, we have
∑

i

∑
p∈Pi

fi(p) ≤ c(e).

Consider a multicommodity flow H = (h1, . . . , hk). Let
σ(i) be the flow with the ith smallest flow value (we assume

that we break ties by the name of the flow unless stated

otherwise), That is v(hσ(i)) ≤ v(hσ(i+1)), for 1 ≤ i ≤ k − 1.
Let v(H) = (v(hσ(1)), v(hσ(2)), . . . , v(hσ(k))) the vector of

flow values in non-decreasing order. We define the rank of

commodity j to be σ−1(j): This is the position of commodity

j in the sorted sequence of the commodities by their values.

To simplify notation we shall assume in the rest of this

section that σ(i) = i, that is the commodities in H are indexed

such that v(h1) ≤ v(h2) ≤ · · · v(hk).

Definition II.1 (UMMF). Let F be a feasible multicommodity

flow. For every 1 ≤ i ≤ k define Li = {fj | v(fj) > v(fi)}.
We say that F is Upward Max-Min Fair if for every flow i,
even after we delete all flows in Li, the flow values fi(p) for
p ∈ Pi, are maximal.

Note that in case where we have only one commodity then

a flow is UMMF if and only if it is a maximal flow. (I.e., it

does not have to be a maximum flow.) The following claim

gives an alternative formulation of UMMF.

Claim II.2. A feasible multicommodity flow F is UMMF if

and only if for every flow fi and every path p ∈ Pi, there exists

an edge e ∈ p such that e is saturated only by commodities

with value not larger than v(fi). Specifically, F is UMMF if

and only if

∀i∀p ∈ Pi∃e ∈ p
∑

p′|(e∈p′)∧(p′∈Pj)∧(v(fj)≤v(fi))

fj(p
′) = c(e) .

III. THE LEXICOGRAPHIC-INCREASE DYNAMICS

A. Overview

In this section we consider dynamics in which at each step

one commodity is increased along one of its paths, at the

expense of commodities which have a higher flow value. We

require that the increase is bounded, such that the value of the

increased commodity (after the increase) is upper bounded by

the value of each decreased commodity (after the decrease).

We prove that any such dynamics converges to a limit, and

that any limit of such dynamics is UMMF.

Consider first the trivial case in which the sequence has

only increase operations. In this case clearly the sequence has

a limit, since the flow values are bounded. Unfortunately, flow

values can both increase and decrease. So the main challenge

is to handle the decrease operations, and to bound them.

The proof focuses on the sorted vector of flow values

v(H) = (v(hσ(1), . . . , hσ(k)) for a multicommodity flow H ,

defined in Section II. Note that the identity of σ(i), the ith
largest flow, changes over time as the dynamic progresses.

Consider the minimal flow value v(hσ(1)). The identity of

the commodity with the smallest flow value may change over

time, but the smallest flow value can never decrease, given

our definition of the dynamics. Now consider the second

smallest flow value. This value might decrease in certain time

steps. However, by the definition of the dynamics, each time

it decreases, the smallest value has to increase. The main

4

challenge in the convergence proof is to charge the decreases

of flow values of large indices to increases of flow values of

smaller indices.

The first step in the proof is to split every sequence of steps

(which respects the dynamic) to basic operations of modifying

a single commodity on a single path, either decreasing or

increasing it. Any step of the dynamics is split to a single

increase and potentially multiple decreases. To simplify the

proof, we require that the increase is done first, and then the

decreases. This implies that the intermediate steps might not

represent a feasible flow. However, we show that if there is

an infinite sub-sequence which is feasible, then the limit is a

feasible flow.

For the proof we define the notion of a happy sequence.

The main property of the happy sequence is that it will allow

us to associate each decrease with an increase that occurred

before it, such that the increase was to a commodity with a

lower rank (recall that the rank of a commodity j is σ−1(j)).

B. Definitions

Consider a sequence H1, H2, . . . of multicommodity flows.

We call a sequence happy if it satisfies the following condi-

tions:

1) The value of each commodity is bounded by R, for R > 0.
2) The difference betweenHs andHs+1 is only in the amount

of flow along a single path of a single commodity. Moreover,

this does not change the order between commodities (up to

tie breaking). Formally, let 1, . . . k denote the commodities.

For every s, we require that there exists a permutation σs

such that for ever i we have v(hs
σs(i)

) ≤ v(hs
σs(i+1)) and

v(hs+1
σs(i)

) ≤ v(hs+1
σs(i+1)).

3) There is a function Π that maps indices in the sequence to

smaller indices defined as follows. If at step s we decrease the

flow of commodity i along a path, then at step Π(s) < s we

increase the flow of commodity i′ along a path. Furthermore, if

the rank of commodity i inHs is j, and the rank of commodity

i′ in HΠ(s) is j′, then j′ < j.
4) Let decrease(s) or increase(s) be the amount by which

we decrease or increase the flow along a path at step s,
respectively. For any step s′ in which we increase the flow

along a path let Π−1(s′) = {s | Π(s) = s′}. Then we have

m · increase(s′) ≥
∑

s∈Π−1(s′) decrease(s), where m is the

number of edges in the graph.

C. Happy Sequence converges

Theorem III.1. If Hs is a happy sequence, then v(Hs) has

a limit.

Proof: Recall that σ(i) is the commodity with the

ith smallest value. Consider v(hs
σ(1)). This value is non-

decreasing throughout the dynamics and is bounded by R so

it must have a limit. Recall that the identity of the commodity

σ(1) may change throughout the process but the value v(hs
σ(1))

does not decrease.

We show that the sum of the decreases of v(hs
σ(2)) is

bounded: Since the total increase of v(hs
σ(1)) is at most R, the

sum of the decreases of v(hs
σ(2)) is at most mR. Furthermore,

since v(hs
σ(2)) is also bounded by R, the sum of the increases

of v(hs
σ(2)) is at most R+mR. It follows that both the sum of

increases and the sum of the decreases of v(hs
σ(2)) are bounded

and therefore have a limit and therefore v(hs
σ(2)) has a limit.

In general let Ai be an upper bound on the sum of the

increases of v(hs
σ(i)). Then we have that Ai ≤ m(A1 +A2 +

· · · + Ai−1) + R. Solving this recurrence we get that Ai ≤
R(m+1)i−1. It follows that the sum of the decreases and the

sum of the increases of v(hs
σ(i)) are bounded and therefore

they have a limit and v(hs
σ(i)) has a limit.

Theorem III.1 shows that the vector of the sorted values of

the commodities converges. But what about the multicommod-

ity flow itself? We represent the multicommodity flow H itself

as a vector of the flow on each path, and denote this vector

p(H). Each coordinate of p(H) corresponds to a path p of

some commodity and the value of the coordinate is the amount

of flow that the particular commodity sends along p. For a

happy sequence of multicommodity flows Hs the difference

between p(Hs) and p(Hs+1) is in exactly one coordinate.

(Following proof is omitted due to lack of space.)

Corollary III.2. If Hs is happy then the sequence p(Hs) has
a limit corresponding to some flow H∗. In addition, if Hs is

happy and it has a infinite subsequence that is a feasible flow

then it has a limit, H∗, which is a feasible flow.

D. From a happy sequence to dynamics

Consider dynamics in which as long as we have a flow H
which is not UMMF we pick some commodity hi, increase

its value along some of its paths while decreasing the flow

along paths of commodities hj such that v(hj) > v(hi). Let
h′
i denote commodity i after the increase and let h′

j denote

commodity j after the decrease. We guarantee that

1) For every path p of commodity hi the value that hi sends

along p does not decrease, and for every path p of hj ,

the value of that hj sends along p does not increase.

2) v(h′
j) ≥ v(h′

i).
3) If hi increases by ∆ then we decrease any hj by at most

m∆.

Let Hs be the sequence of multicommodity flows generated

by such a dynamics. It is easy to verify that by refining the

transition from Hs to Hs+1 into multiple smaller steps we

can obtain a happy sequence. Therefore by Corollary IV-C

the sequence Hs converges to a feasible flow H∗.

How do we guarantee that the limit flow H∗ is UMMF?

For that we add the following two additional requirements:

4) If a commodity can increase while changing only larger

commodities, then in a finite number of steps we will

either increase it or it will not be possible to increase it

anymore.

5) When we increase a commodity then we do it by at least

a constant fraction ζ of its maximum possible increase

(subject to the conditions of the dynamics).

The following theorem (proof omitted) derives the conver-

gence.

5

Theorem III.3. For any dynamic satisfying Conditions (1)-(5)

above the sequence of multicommodity flow Hs converges to

a feasible multicommodity flow H∗ which is UMMF.

E. Implementation

An advantage of such dynamics is their inherent distributed

nature. They can be easily implemented distributively and

asynchronously. There has been a considerable amount of

work on distributive implementations of Waterfill in the single

path setting (see e.g. [1]), and the standard of ABR traffic in

ATM networks was designed to support it. The main difference

here is that each routerB has to know the flow of a commodity

i along all its paths and not only along the path p that goes

through B, in order to decide if i can increase along p.
Here is a high level sketch of a conceptual framework

for such an implementation. Commodities would periodically

send control packets (much like the RM cells in ATM)

to the routers, which include their total flow value. Given

this information, each router B can inform each commodity

whether it can increase its rate (namely, if a commodity does

not have the maximum rate among all the commodities sharing

the routerB, it can potentially increase the rate). A commodity

i which has a path p on which all routers report that i can

increase its rate, increases the rate along path p. Commodities

can decrease their rates either by getting explicit messages

from the routers or implicitly by periodically checking how

much they can send along each path.

IV. ITERATIVE EXHAUSTIVE WATERFILL (IEWF)

In this section we give a natural generalization of the

Waterfill algorithm and prove that it converges to an UMMF

multicommodity flow. We call this generalization the Iterative

Exhaustive WaterFill (IEWF) algorithm.

We start with an intuitive description of the algorithm, a

precise description is provided in Section IV-A. The algorithm

works in iterations. Each commodity maintains a distribution

{λ(p) | p ∈ Pi} over its paths p. We call the fractions {λ(p) |
p ∈ Pi}, the splits of commodity i. These distributions are

updated in each iteration. During an iteration we increase the

flow of the commodities at the same rate and split it to paths

according to λ. When edges (and thereby paths) gets saturated

we re-scale the splits of the paths remaining open. The flow

at the end of the iteration determines the splits with which

we start the next one. The goal is to have splits for each

commodity, such that all of its paths, with non-zero flow, will

be saturated at the same time t, and all its paths with zero

flow will be saturated by time t.

A. The algorithm

We now define the IEWF algorithm precisely. Given an

instance of the multi-commodity flow problem IEWF starts

with arbitrary initial splits λ(p) for p ∈ Pi such that∑
p∈Pi

λ(p) = 1 and λ(p) ≥ 0. The IEWF updates the splits

in each iteration as follows.

Its starts the iteration with all commodities sending 0
flow. Throughout the iteration it increases all commodities

simultaneously at the same rate. To increase commodity i by
1, it increases the flow along paths p ∈ Pi by λ(p). When

an edge e becomes saturated we set the splits of all paths p
going through edge e to 0. When setting the split of a path

p ∈ Pi to zero there are two cases. If there is at least one

non-saturated path with a non-zero split then we re-scale the

splits of all other paths of commodity i proportionally to their

previous value so they sum up to 1. Let UnSat be the set of

unsaturated paths and Sat be the set of saturated paths. Then

the new split of an unsaturated path p of commodity i is,

λ′(p) =
λ(p)∑

p∈Pi∩UnSat λ(p)

If all non-saturated paths have split zero then we change these

splits to be equal and sum to one (i.e., each equals to one

divided by the number of non-saturated paths).

An iteration terminates when all paths of all commodities

are saturated. When an iteration terminates the IEWF algo-

rithm uses the resulting flow to define the splits with which

it starts the next iteration. That is, let fi(p) be the flow of

commodity i along path p ∈ Pi at the end of the iteration,

then we set λ(p) = fi(p)
v(fi)

and start a new iteration.

The proof that the IEWF algorithm converges to a UMMF

multicommodity flow is fairly complex and consists of the

following steps.

1) We show that the flow and the splits maintained by IEWF

have a limit (i.e., they converge to some values as we move

from an iteration to the next). This step is described in Section

IV-C.

2) We define a notion of Equilibrium Max-Min Fair (EMMF)

multicommodity flow. This notion captures multicommodity

flows F which define splits such that if we start an iteration

of IEWF with these splits then the resulting flow is exacty F .

We prove that a multicommodity flow is EMMF if and only

if it is UMMF. This is described in Section IV-B.

3) We complete the proof by showing that the limit of IEWF

is an EMMF multicommodity flow (and therefore UMMF).

The proof of this last step is complicated since an iteration of

IEWF, as a function mapping splits to splits is not a continuous

function. This part is described in Section IV-D.

B. Equilibrium Max-Min Fairness (EMMF)

Given any multi-commodity flow F , and commodity i,
we can define the splits λi(p) = fi(p)/v(fi), p ∈ Pi

(
∑

p∈Pi
λi(p) = 1) which are associated with commodity i

in F . Suppose we run IEWF starting with these splits. For

each edge e (resp. path p), let τ(e) (resp. τ(p)) be the time in

which e (resp. p) gets saturated during this run of IEWF. For

an edge e let flow(e, t) (resp. flow(p, t)) be the amount of

flow through and edge e (resp. a path p) at time t during the

run.

Definition IV.1 (EMMF). A feasible multi-commodity flow is

equilibrium max-min fair (EMMF) if for every commodity i
the followings hold:

1) for every path p ∈ Pi, with λ(p) > 0 we get that τ(p) =

6

v(fi).
2) for every p with λ(p) = 0, τ(p) ≤ v(fi).

Note that if we start with an EMMF flow F and run

IEWF using the splits of F as the initial splits then for every

commodity i all paths with nonzero flow are saturated exactly

at v(fi). The paths of commodity i with 0 splits will be

saturated by time v(fi). The following lemma follows from

the definition of EMMF flow and from the definition of IEWF.

Lemma IV.2. For each path p ∈ Pi with λ(p) > 0 we have

that flow(p, v(fi)) = λ(p)v(fi). For each path p with λ(p) =
0 we have that flow(p, t) = 0 for any t.

The following theorem shows that the notions of UMMF

and EMMF are equivalent.

Theorem IV.3. A flow is upward max-min fair if and only if

it is equilibrium max-min fair.

Proof: Assume that the flow F is equilibrium max-min

fair. Since F is equilibrium max-min fair we know that for ev-

ery commodity i and every path p ∈ Pi, there exists an edge e
such that τ(e) ≤ v(fi). Recall that Li = {fj | v(fj) > v(fi)}.
We claim that for any commodity fj ∈ Li there is no path

p ∈ Pj with λj(p) > 0 that goes through e. Indeed, if there is
such p we get that mine′∈p τ(e

′) ≤ τ(e) ≤ v(fi) < v(fj) in

contradiction with the assumption that F is equilibrium max-

min fair (with respect to fj).
This implies that e remains saturated even if we remove all

flows fj with v(fj) > v(fi) from the graph. It follows that we

cannot increase the flow on any path of commodity i even if

we remove all flows fj with v(fj) > v(fi) from there graph

so F is upward max-min fair.

For the converse, assume that the flow F is upward max-

min fair. Then by Claim II.2, for every commodity fi and path

p ∈ Pi there is an edge e ∈ p such that
∑

p′|(e∈p′)∧(p′∈Pj)∧(v(fj)≤v(fi))

fj(p
′) = c(e) .

Thus by time v(fi) this edge is saturated, or in other words

τ(e) ≤ v(fi).
It is left to show that for every path p, if λi(p) > 0

then τ(p) = mine∈p τ(e) = v(fi). We prove this by con-

tradiction. Let p′ the path with minimum τ(p′) among all

paths {p | p ∈ Pj and τ(p) < v(fj)}. Assume p′ ∈ Pi.

Then by the definition of IEWF until time τ(p′), IEWF has

not changed any splits. Let e be an edge on p′ such that

τ(e) = τ(p′). Then flow(e, τ(p)) =
∑

p|e∈p λ(p)τ(p) <∑
p|e∈p,p∈Pj

λ(p)v(fj) ≤ c(e). The strict inequality holds

since τ(p′) < v(fi) and e ∈ p′, and the last inequality holds

since F is feasible. This contradicts the assumption that e is

saturated at time τ(p′).

C. Convergence of IEWF

In this section we show that the multi-commodity flow

computed in in each iteration of IEWF converges to a limit.

In the next section we show that this limit is an EMMF

multicommodity flow (and hence UMMF).

Consider an iteration of IEWF. Recall that flow(p, t) is the
flow on path p at time t. Let g0i be the flow of commodity

i at the end of the previous iteration whose splits are used

to start the current iteration. We define a flow function gti by

setting gti(p) = flow(p, t) if p ∈ Pi is saturated at time t
and gti(p) = g0(p) if p ∈ Pi is not saturated at time t. Let
λ(p, t) be the split that IEWF uses for a path p at time t.
We define v(gti) =

∑
p∈Pi

gti(p). Note that v(g0i) is the total

flow of commodity i in the previous iteration. Since we are

discussing an arbitrary commodity i in

Lemma IV.4. Fix an unsaturated path p of commodity i and
some time t. Then g0i (p) ≥ flow(p, t) if and only if v(gti) ≥ t.
Furthermore, if g0i (p) ≥ flow(p, t) then

g0i (p)− flow(p, t) = λ(p, t)(v(gti)− t).

Due to lack of space we omit the proof.

Consider an iteration of IEWF. Let t1, t2, . . . , tm′ be the times

in which edges get saturated during this iteration. Let Ei be

the set of edges that are saturated at time ti and let Gti be the

multi-commodity flow after the saturation of Ei. Let G
t0 be

the multi-commodity flow at the beginning of the iteration.

We consider the sequence Gt0 , Gt1 , . . . , Gtm′ . The differ-

ence between Gti and Gti+1 is in the value of the flow along

all paths that go through an edge of Ei+1 and were not

saturated before time ti+1. In Gti+1 we change the flow value

along each such path to be the value that actually flows along

it in the flow maintained by IEWF (instead of its value in Gti).

Consider the sequence obtained from Gt0 , Gt1 , . . . , Gtm′ by

splitting the transition from Gti to Gti+1 into multiple steps

each changing the value along a single path that gets saturated

at ti+1. We first in increase the flow along paths whose flow

increases in an arbitrary order and then decrease the flow

along paths whose flow decreases in an arbitrary order. We

show that this refinement is a happy sequence. To simplify

the following presentation, we ignore the refinement of each

transition fromGti to Gti+1 to many transitions each changing

a single path. We also abuse the notation slightly and refer

to Gt0 , Gt1 , . . . , Gtm′ as a happy sequence (meaning that its

refinement is happy).

It then follows that the concatenation of the sequences

Gt0 , Gt1 , . . . , Gtm′ of all the iterations of IEWF is also a

happy sequence and therefore by Corollary III.2 the flow

maintained by IEWF has a limit. Furthermore, since Gt0 is

a feasible flow it follows by Corollary IV-C that the limit of

IEWF is feasible.

Theorem IV.5. For each iteration of IEWF the sequence

Gt0 , Gt1 , . . . , Gtm′ is happy.

Proof: Each flow Gti is feasible when we multiply the

capacities by a factor of 2. This follows since it is a sum

of a flow contained in Gt0 which is feasible, and a subset

of the flow maintained by IEWF which is also feasible. This

establishes that there is an R > 0 that bounds the flow of

each commodity, and establishes the first property of a happy

sequence. The second property, of a single path modification

7

is immediate from the construction. It remain to construct

the mapping Π (property 3) and relate the increases to the

decreases (property 4).

Consider the transition from Gti to Gti+1 and an edge

ei+1 ∈ Ei+1. Let P
− be the set of paths through ei+1 that

are being saturated at ti+1 such that the flow through them in

Gti+1 is smaller than the flow through them in Gti . Let P+

be the set of paths through ei+1 saturated at ti+1 or before

such that the flow through them in Gti+1 is larger than the

flow through them in Gt0 .

Let ∆− =
∑

p∈P− decrease(p), where decrease(p) is the
amount by which the flow along p decreases. Let ∆+ =∑

p∈P+ increase(p), where increase(p) is the amount by

which the flow along p increases. We claim that ∆+ ≥ ∆−.

This holds since∆+−∆− is larger than the difference between

the flow along ei+1 in Gti+1 and the flow along ei+1 in Gt0

which is nonnegative since the edge ei+1 is saturated in Gti+1 .

Since ∆+ ≥ ∆− we can map each unit of decrease in the

value of a path in P− to a unit of increase in the value of a path

in P+. When we go over all edges ei+1 ∈ Ei+1 this mapping

defines the function Π. Note that a path p can be counted as

an increase in multiple edges ei+1 ∈ Ei+1, but clearly at most

m = |E| edges. Therefore, every unit of increase in the flow

value along a path p is being charged by at most m unit of

decrease.

Assume that at we charge a decrease in the flow along a

path p of commodity j to an increase in the flow along a path

p′ of commodity j′. Let t′ ≤ ti+1 be the time in which p′

got saturated. (It follows that at time t′ we increased the flow

along p′.) Let r be the rank of commodity j at time ti+1, and

let r′ be the rank of commodity j′ at time t′. It remains to

show that r′ < r.
By Lemma IV.4, v(g

ti+1

j) ≥ ti+1. It follow that also for

every commodity β of rank larger than r at time ti+1 we have

v(g
ti+1

β) ≥ ti+1. Furthermore from Lemma IV.4 we can also

deduce that the value of all commodities of rank at least r at

time ti+1 was at least ti+1 since the beginning of the iteration.

By Lemma IV.4, v(gt
′

j′) < t′. Since t′ ≤ ti+1 we get that

all flows of rank at least r at time ti+1 are larger than j′ at
time t′ and therefore r′ < r.

D. The limit of IEWF is equilibrium

If we think of an iteration of IEWF as a function f mapping

splits to splits then each iteration of IEWF computes λ ←
f(λ). It would be easy to prove that an iterative algorithm of

this sort (which we already know that is converging) indeed

converges to a fixed point of f (EMMF) if f is continuous.

Unfortunately f is not continuous. There are examples where a

tiny perturbation of initial conditions can reach a very different

outcome in IEWF.

Despite this discontinuity we prove that

Theorem IV.6. The limit of the sequence of flows produced

by the iterations of IEWF is an EMMF multicommodity flow.

The proof of this theorem is by contradiction. We show that

if the limit (which we already know that exists) is not EMMF

then when the flow of IEWF is already very close to it, the

change in the splits is too large. The details are delicate and

we omit them due to lack of space.

V. EXPERIMENTAL STUDY

We analyzed the behavior of IEWF on two types of net-

works: the Google backbone network and a set of synthetic

networks generated using the Waxman model [11] in varying

sizes. For the Google backbone experiments, we used a metro

level abstraction of Google’s backbone. We selected a subset of

the largest demands in the Google network as our commodity

set.

For the Waxman graphs we generated 20 graphs with 20, 30,
40, 50, 60 and 70 nodes. We used α = 0.55 and β = 0.55,
following the guidelines from [12]. These parameters gives

us graphs with an average degree of about 0.3n, where n
is the number of nodes. For each size we generated graphs

repetitively, discarding graphs which are not two connected,

until we got 20 two connected graphs.

To generate the commodities for the Waxman graphs we

randomly split the nodes into three sets and selected one as

the sources and the other as the destinations. We defined a

commodity from each of the sources to each of the destina-

tions. Overall, there were about (n3)
2 commodities for each

graph.

As explained in the introduction, the global max-min allo-

cation (GMMF) can be computed by iterative deployment of a

linear program. We implemented this algorithm and used the

flows it produces in order to evaluate the behavior of IEWF.

A. IEWF Split Selection and Convergence

In our first experiment we study the behavior of IEWF

w.r.t. initial split selection and the convergence rate in practical

scenarios. We compare four methods of split initialization for

the IEWF: The first two methods are oblivious to the path

characteristics; in the uniform method splits are defined simply

as 1
of paths for the commodity

, and in the random method, splits

are computed proportionally to a set of random numbers. The

other two methods use decaying splits, both routing more flow

along shorter paths. The first variant, called len exponential

decay uses splits proportional to 1/10ℓ, where ℓ is the number

of hops in the path. This method prefer paths with less hops

by giving them a greater split, but all paths with the same

hop count get the same split. The second variant adds a tie

breaking component to paths with equal hop count as follows;

sort the paths for each commodity from shortest to longest

by hop count. If two or more paths have the same number of

hops, arbitrarily order them. Let i be the index of a path p for

some commodity. The split given to this path is proportional

to 1/10i. The result here is an exponential decay in the split

values where no two paths belonging to the same commodity

have the same split. We call this split selection exponential

decay.

Figure 2(a) depicts the ratio between the overall throughput

obtained by the IEWF algorithm after two and ten iterations,

and the total throughput achieved by GMMF for the same

8

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 20 30 40 50 60 70

(t
h
ro

u
g
h
p
u
t
u
m

m
f)

/(
th

ro
u
g
h
p
u
t
g
m

m
f)

number of commodities

(throughput UMMF)/(throughput GMMF) -- google backbone

exp decay 10
exp decay 2

len exp decay 10
len exp decay 2

random 10
random 2

uniform 10
uniform 2

(a) Total throughput for the various initial conditions.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 20 30 40 50 60 70 80

(t
h
ro

u
g
h
p
u
t
u
m

m
f)

/(
th

ro
u
g
h
p
u
t
g
m

m
f)

number of vertices

(throughput UMMF)/(throughput GMMF) -- waxman graphs

exp decay 10
exp decay 2

(b) Total throughput for the various initial conditions.

 0.001

 0.01

 0.1

 1

 0.01 0.1

G
M

M
F

 t
h
ro

u
g
h
p
u
t

UMMF throughput

IEWF vs GMMF, 50 commodities

2 iterations
10 iterations

(c) Comparison of the flow values allocated by GMMF and IEWF (with
2 and 10 iterations).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100 150 200 250 300

V
a
ri
a
n
c
e
 o

f
s
p
lit

s

Paths

Variance of the splits

GMMF
UMMF uniform splits

UMMF exp decay splits

(d) Comparison of the path allocation variance.

Fig. 2. Experimental Results

input. Each point in the graph is the average of 50 runs,

each having a random subset of 50 commodities. The x-axis

represents the number of commodities in this random subset,

and the y-axis represents the average total throughput ratio.

It is clear from the graph that the approaches that take into

account the paths’ length perform better in terms of higher

overall throughput. The reason is that less links are used when

shorter paths are preferred and the network, in general, is less

congested, hence more traffic can be routed (assuming there

are many commodities in the network). The highest throughput

was achieved when using exponential decay. The reason is that

this approach prefers exactly one path per commodity over the

others and will route significant amounts of traffic on each

path only when all the shorter paths for this commodity are

fully congested. Again, the network is less congested in this

scenario as paths get saturated one by one, leaving larger parts

of the network “free”.

The main difference between runs of 2 and 10 iteration

(which is not reflected by the total throughput) is in the fairness

between commodities. A run of 10 iteration is able to better

balance the “equivalent” commodities (commodities that have

the same flow in GMMF) in the following sense. Commodities

that have the same flow value in a GMMF solution typically

have closer values after 10 iterations than after 2 iterations.

The gain in the throughput of the run of 2 iterations, compared

to the run of 10 iterations, with exponential decay splits, is

mainly due to very few high flow commodities .

We also conducted this experiment on the family of Wax-

man graphs. The results are shown in Figure 2(b). The x-axis

represents the number of nodes in the graph and the y-axis is

the average of the UMMF throughput divided by the GMMF

throughput on all the graphs tested. We used exponential decay

as the split selection and compared the results after two and

ten iterations. On these graphs, the UMMF solution reached

at least 96% of the GMMF solution’s throughput.

Similar to the Google backbone graph, one can see the

expected slow decline in the quality of the UMMF solution,

as the network grows larger. In this case, we also see an

improvement, going from 20 to 50 nodes. This improvement

is due to the fact that we required the Waxmann graph to

be 2-connected. For small graphs, this means that we had to

reject many of the graphs we sampled, and this skews the

distribution.

9

B. Allocations of Individual Commodities

Figure 2(c) depicts a typical run over a random set of 50
commodities in the Google backbone network. Each point in

the graph represents one commodity out of the top Google

demands. The x coordinate represents the ratio between the

throughput given to that commodity in the IEWF solution

we found (either 2 or 10 iterations) to the total throughput

in the GMMF solution. The y coordinate represents the ratio

between the throughput given to the same commodity in the

GMMF solution found by the LP based algorithm to the total

throughput in the GMMF solution. The points along the diag-

onal represent commodities that got the same throughput both

in the GMMF solution and in the IEWF solution, points below

the diagonal represent commodities with a bigger share in

the IEWF solution, while points above the diagonal represent

commodities with a bigger share in the GMMF solution.

As can be clearly seen from Figure 2(c) in the practical

scenarios we considered, the results of GMMF and UMMF

were close, and there is no significant gap in fairness. Running

10 iterations usually outperforms 2 iterations in terms of

fairness. Going from 10 to 50 iterations did not produce much

of a difference, and thus is not depicted here.

C. IEWF Stability

Finally, we tested the stability of the two approaches on the

Google backbone network to see how sensitive is the resulting

multicommodity flow to a small change in the demands. In

real life, demands vary over time (usually in a rather smooth

manner), which leads to changes in the Traffic Engineering

solution deployed in the network. An important property of

any TE algorithm is stability when reacting to these changes,

as deploying new splits or paths to the network is time

consuming and can have undesirable effects like out of order

arrival of TCP packets causing re-transmits.

For this experiment, we used the Google backbone network

and chose 50 different sets of demands, which are very similar.

For each set, we found the GMMF solution, and the IEWF

solution (both with random initial splits and with exponentially

decaying splits). For each commodity and path, we collected

the splits of this path from all the experiments in which

the commodity participates, and computed its variance. The

results are presented in Figure 2(d): the top line in the graph

represents a histogram of the split variance in the GMMF

solution and the other two lines represent a histogram of the

variance values in the IEWF runs. The variance in the splits

generated by IEWF was significantly lower than the splits

variance in the GMMF solution. One can conclude that a small

change in the demand set led to a rather big change in the

GMMF solution, while the IEWF solution was more stable.

VI. RELATED WORK

Ever since the fundamental work of Jain et. al. [7] originally

published in 1984, the notion of fairness was the subject of

extensive research in the context of routing, flow control, and

more recently traffic engineering [3], [13], [8].

In this paper we concentrate on max-min fairness in the

context of multicommodity flow. A recent survey focusing on

this topic can be found in [8], indicating that all advanced

algorithmic solutions require, in some way or another, to solve

linear programs iteratively.

Two papers are of prime interest. In [9] the authors define

a generalized notion of bottleneck, and show that a general-

ization of the Waterfill algorithm can be applied in the case of

a multicommodity flow. However, this generalization requires

an iterative solution of linear programs.

Another recent approach to circumvent the computational

difficulty of the problem by using a relaxed notion of max-min

fairness was studied in [2]. The authors define what they call

a “local” max-min fair flow, and present a fast algorithm that

computes a flow which approximates this local max-min fair

flow. Their approach relies on recent approximation algorithms

for concurrent multicommodity flow [6], [5]. Unfortunately,

their definition of a local max-min fair multicommodity flow

is weak and not natural, since it depends on the algorithm

which is used to compute concurrent multicommodity flow.

As a result the exact properties of the approximate allocations

are not clear.

Our algorithmic approach is based on a generalization of the

simple distributed single path scheme, which naturally leads

to the definition of upward max-min fair multicommodity

flow. Moreover, the definition of UMMF is independent of

the algorithm used, and we actually prove that a large family

of dynamics converge to it.

REFERENCES

[1] Y. Afek, Y. Mansour, and Z. Ostfeld. On the convergence of rate based
flow control. In STOC, pages 106–143, 1996.

[2] M. Allalouf and Y. Shavitt. Centralized and distributed algorithms for
routing and weighted max-min fair bandwidth allocation. IEEE/ACM
Transactions on Networking, 16(5):1015 –1024, oct. 2008.

[3] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood
Cliffs, 2001.

[4] Y. Dinitz. Dinitz’ algorithm: The original version and Even’s version.
In Essays in Memory of Shimon Even, pages 218–240, 2006.

[5] L. K. Fleischer. Approximating fractional multicommodity flow inde-
pendent of the number of commodities. SIAM Journal on Discrete
Mathematics, 13:505–520, 2000.

[6] N. Garg and J. Könemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM J. Comput.,
37(2):630–652, 2007.

[7] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
Computing Research Repository, cs.NI/9809, 1998.

[8] D. Nace and Pioro M. Max-min fairness and its applications to
routing and load-balancing in communication networks: a tutorial. IEEE
Communications Surveys and Tutorials, 10(4):5 –17, 2008.

[9] B. Radunovic and J. Le Boudec. A unified framework for max-min and
min-max fairness with applications. In 40th Annual Allerton Conference

on Communication, Control, and Computing, 2002.
[10] N. Wang, K. Ho, G. Pavlou, and M. Howarth. An overview of routing

optimization for internet traffic engineering. Communications Surveys

Tutorials, IEEE, 10(1):36 –56, quarter 2008.
[11] B. M. Waxman. Routing of multipoint connections. IEEE Journal on

Selected Areas in Communication, 6(9):1617–1622, 1988.
[12] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an

internetwork. In INFOCOM, pages 594–602, 1996.
[13] Y. Zhou. Resource Allocation in Computer Networks: Fundamental

Principles and Practical Strategies. PhD thesis, Drexel University, 2003.

