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ABSTRACT 
In this chapter, we describe the key indexing components of today’s web search engines. As the World 
Wide Web has grown, the systems and methods for indexing have changed significantly.  We present the 
data structures used, the features extracted, the infrastructure needed, and the options available for 
designing a brand new search engine.  We highlight techniques that improve relevance of results, discuss 
trade-offs to best utilize machine resources, and cover distributed processing concept in this context. In 
particular, we delve into the topics of indexing phrases instead of terms, storage in memory vs. on disk, 
and data partitioning. We will finish with some thoughts on information organization for the newly 
emerging data-forms. 
 
INTRODUCTION 
The World Wide Web is considered to be the greatest breakthrough in telecommunications after the 
telephone. Quoting the new media reader from MIT press [Wardrip-Fruin , 2003]:  

“The World-Wide Web (W3) was developed to be a pool of human knowledge, and human 
culture, which would allow collaborators in remote sites to share their ideas and all aspects of a 
common project.” 

The last two decades have witnessed many significant attempts to make this knowledge “discoverable”. 
These attempts broadly fall into two categories:  

 
(1) classification of webpages in hierarchical categories (directory structure), championed by the 
likes of Yahoo! and Open Directory Project;  
(2) full-text index search engines such as Excite, AltaVista, and Google.  

 
The former is an intuitive method of arranging web pages, where subject-matter experts collect and 
annotate pages for each category, much like books are classified in a library. With the rapid growth of the 
web, however, the popularity of this method gradually declined. First, the strictly manual editorial process 
could not cope with the increase in the number of web pages. Second, the user’s idea of what sub-tree(s) 
to seek for a particular topic was expected to be in line with the editors’, who were responsible for the 
classification. We are most familiar with the latter approach today, which presents the user with a 
keyword search interface and uses a pre-computed web index to algorithmically retrieve and rank web 
pages that satisfy the query. In fact, this is probably the most widely used method for navigating through 
cyberspace. The earliest search engines had to handle orders of magnitude more documents than previous 
information retrieval systems. In fact, around 1995, when the number of static web pages was believed to 
double every few months, AltaVista reported having crawled and indexed approximately 25 million 
webpages. Indices of today’s search engines are several orders of magnitude larger; Google reported 
around 25 billion web pages in 2005 [Patterson, 2005], while Cuil indexed 120 billion pages in 2008 
[Arrington, 2008]. Harnessing together the power of hundreds, if not thousands, of machines has proven 
key in addressing this challenge of grand scale.  
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Figure 1: History of Major Web Search Engine Innovations (1994-2010) 

 
Using search engines has become routine nowadays, but they too have followed an evolutionary path. 
Jerry Yang and David Filo created Yahoo in 1994, starting it out as a listing of their favorite web sites 
along with a description of each page [Yahoo, 2010]. Later in 1994, WebCrawler was introduced which 
was the first full-text search engine on the Internet; the entire text of each page was indexed for the first 
time. Introduced in 1993 by six Stanford University students, Excite became functional in December 
1995. It used statistical analysis of word relationships to aid in the search process and is part of AskJeeves 
today. Lycos, created at CMU by Dr. Michael Mauldin, introduced relevance retrieval, prefix matching, 
and word proximity in 1994. Though it was the largest of any search engine at the time, indexing over 60 
million documents in 1996, it ceased crawling the web for its own index in April 1999. Today it provides 
access to human-powered results from LookSmart for popular queries and crawler-based results from 
Yahoo for others. Infoseek went online in 1995 and is now owned by the Walt Disney Internet Group.  
 
AltaVista, also started in 1995, was the first search engine to allow natural language questions and 
advanced searching techniques. It also provided multimedia search for photos, music, and videos. Inktomi 
was started in 1996 at UC Berkeley, and in June of 1999 introduced a directory search engine powered by 
concept induction technology. This technology tries to model human conceptual classification of content, 
and projects this intelligence across millions of documents. Yahoo purchased Inktomi was in 2003. 
AskJeeves launched in 1997 and became famous for being the natural language search engine, that 
allowed the user to search by framing queries in question form and responding with what seemed to be 
the right answer. In reality, behind the scenes, the company had many human editors who monitored 
search logs and located what seemed to be the best sites to match the most popular queries. In 1999, they 
acquired Direct Hit, which had developed the world’s first click popularity search technology, and in 
2001, they acquired Teoma whose index was built upon clustering concepts of subject-specific popularity. 
Google, developed by Sergey Brin and Larry Page at Stanford University, launched in 1998 and used 
inbound links to rank sites. The MSN Search and Open Directory Project were also started in 1998, of 
which the former reincarnated as Bing in 2009. The Open Directory, according to its website, “is the 
largest, most comprehensive human-edited directory of the Web”.  Formerly known as NewHoo, it was 
acquired by AOL Time Warner-owned Netscape in November 1998.  
 
All current search engines rank web pages to identify potential answers to a query. Borrowing from 
information retrieval, a statistical similarity measure has always been used in practice to assess the 
closeness of each document (web page) to the user text (query); the underlying principle being that the 
higher the similarity score, the greater the estimated likelihood that it is relevant to the user. This 
similarity formulation is based on models of documents and queries, the most effective of which is the 
vector space model [Salton, 1975]. The cosine measure [Salton, 1962] has consistently been found to be 
the most successful similarity measure in using this model. It considers document properties as vectors, 
and takes as distance function the cosine of the angle between each vector pair. From an entropy-based 
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perspective, the score assigned to a document can be interpreted as the sum of information conveyed by 
query terms in the document. Intuitively, one would like to accumulate evidence by giving more weight to 
documents that match a query term several times as opposed to ones that contain it only once. Each 
term’s contribution is weighted such that terms appearing to be discriminatory are favored while reducing 
the impact of more common terms. Most similarity measures are a composition of a few statistical values: 
frequency of a term t in a document d (term frequency or TF), frequency of a term t in a query, number of 
documents containing a term t (document frequency or DF), number of terms in a document, number of 
documents in the collection, and number of terms in the collection. Introduction of document-length 
pivoting [Singhal, 1996] addressed the issue of long documents either containing too many terms, or 
many instances of the same term.  
 
The explosive growth of the web can primarily be attributed to the decentralization of content publication, 
with essentially no control of authorship. A huge drawback of this is that web pages are often a mix of 
facts, rumors, suppositions and even contradictions. In addition, web-page content that is trustworthy to 
one user may not be so to another. With search engines becoming the primary means to discover web 
content, however, users could no longer self-select sources they find trustworthy. Thus, a significant 
challenge for search engines is to assign a user-independent measure of trust to each website or webpage. 
 Over time, search engines encountered another drawback [Manning, 2008] of web decentralization: the 
desire to manipulate webpage content for the purpose of appearing high up in search results. This is akin 
to companies using names that start with a long string of As to be listed early in the Yellow Pages. 
Content manipulation not only includes tricks like repeating multiple keywords in the same color as the 
background, but also sophisticated techniques such as cloaking and using doorway pages, which serve 
different content depending on whether the http request came from a crawler or a browser.  
 
To combat such spammers, search engines started exploiting the connectivity graph, established by 
hyperlinks on web pages. Google [Brin, 1998] was the first web search engine known to apply link 
analysis on a large scale, although all web search engines currently make use of it. They assigned each 
page a score, called PageRank, which can be interpreted as the fraction of time that a random web surfer 
will spend on that webpage when following the out-links from each page on the web. Another 
interpretation is that when a page links to another page, it is effectively casting a vote of confidence. 
PageRank calculates a page’s importance from the votes cast for it. HITS is another technique employing 
link analysis which scores pages as both hubs and authorities, where a good hub is one that links to many 
good authorities, and a good authority is one that is linked from many good hubs. It was developed by Jon 
Kleinberg and formed the basis of Teoma [Kleinberg, 1999].  
 
Search engines aim not only to give quality results but also to produce these results as fast as possible. 
With several terabytes of data spread over billions of documents in thousands of computers, their systems 
are enormous in scale. In comparison, the text of all the books held in a small university might occupy 
only around 100 GB. In order to create such highly available systems, which continually index the 
growing web and serve queries with sub-second response times, it must optimize all resources: disk, 
memory, CPU time, as well as disk transfers.  
 
This chapter describes how the index of a web-scale search engine organizes all the information contained 
in its documents. In the following sections, we will cover the basics of indexing data structures, introduce 
techniques that improve relevance of results, discuss trade-offs to best utilize the machine resources, and 
cover distributed processing concepts that allow scaling and updating of the index. In particular, we will 
delve into the topics of indexing phrases instead of terms, storage in memory vs. on disk, and data 
partitioning. We will conclude with some thoughts on information organization for the newly emerging 
data-forms.  
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ORGANIZING THE WEB 
In order to avoid linearly scanning each webpage at query time, an index of all possible query terms is 
prepared in advance. Lets consider the collection of English books in a library. The simplest approach 
would be to keep track of all words from the English dictionary that appear in each book. On repeating 
this across all books, we end up with a term-incidence matrix, in which each entry tells us if a specific 
word occurs in a book or not. Figure 2 shows a sample term-incidence matrix. The collection of 
documents over which a search engine performs retrieval is referred to as a corpus. So, for a corpus of 
1M documents with 100K distinct words, ~10GB (1M x 100K) will be required to hold the index in 
matrix form. The corpus itself will require around 4 bytes to encode each distinct word and hence a total 
of 4 GB (1M x 1000 x 4) storage if each document is 1000 words long on average. Clearly, lot of space is 
wasted in recording the absence of terms in a document, and hence a much better representation is to 
record only the occurrences.  

 
Figure 2: Term-Incidence Matrix for a sample of English documents 

 
The most efficient index structure is an inverted index: a collection of lists, one per term, recording the 
documents containing that term. Each item in the list for a term t, also referred to as a posting, records the 
ordinal document identifier d, and its corresponding term frequency (TF): <d, tf>. Note that if 4 bytes are 
used to encode each posting, a term appearing in ~100K documents will result in a posting list of size 
100KB to 1MB; though most terms will have much shorter posting lists. We illustrate this in Figure 3 for 
the same example as in Figure 2. 
 

 
Figure 3: Illustration of Posting Lists for Example from Figure 2 

 
In our example above, all terms in the English dictionary were known before hand. This, however, does 
not hold true on the web where authors create content in a multitude of languages, along with large 
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variations in grammar and style. Webpages are often found riddled with text in various colors and fonts, 
as well as images that lead to richer textual content when clicked, thereby providing no clear semantic 
structure. In addition, the character sequences are encoded using one of many byte-encoding schemes, 
such as UTF-8 or other vendor-specific standards. Since any visible component of a webpage might 
reasonably be used as query term, we take a superset of all spoken words. The set also includes numbers, 
constructs such as IA-32 or X-86, as well as tokens appearing in any URL. This collection of terms in an 
index is conventionally called a dictionary or lexicon. Dictionary and posting lists are the central data 
structures used in a search engine.  

Building a Dictionary of Terms 
For efficiency purposes, an identifier is used to represent each term in the dictionary, instead of storing 
them as strings. This mapping is either created on the fly while processing the entire corpus, or is created 
in two passes. The first pass compiles the dictionary while the second pass constructs the index. In both 
cases, the first step is to turn each document into a list of tokens and then use linguistic preprocessing to 
normalize them into indexing terms. This involves simple steps like breaking down sentences on 
whitespace and eliminating punctuation characters, as well as tricky steps like analyzing uses of the 
apostrophe for possession and verb contractions. Another common practice is case-folding by which all 
letters are reduced to lower case. This is a good idea in general since it allows the query automobile to 
also match instances of Automobile (which usually occurs at the beginning of a sentence). Another use 
case is in matching words with diacritics since users often enter queries without the diacritics. Documents 
also tend to use different forms of the same word, such as realize, realizes, and realizing. Stemming is a 
heuristic process that chops off the ends of words in the hope of collapsing derivationally related words. 
The most common algorithm used for stemming English words is Porter’s algorithm [Porter, 1980].  
Foreign languages require even more sophisticated techniques for term tokenization [Fung, 1998 and 
Chiang, 1992].  
 
Certain terms, such as ‘the’ and ‘to’, are extremely common across documents and hence add little value 
towards matching specific documents to bag-of-words queries. All such terms can be identified by sorting 
the dictionary terms by their document frequency (DF), and then selecting the most frequent terms. 
Posting lists corresponding to such terms tend to be very long too, thereby adding to query processing 
cost. Removing these frequently occurring words (stop words) from the dictionary seems like a good idea 
since it does little harm and saves considerable storage space. Search engines, however, tend not to 
discard them since they play an important role in queries framed as phrases. By placing double quotes 
around a set of words, users ask to consider those words in precisely that order without any change. 
Eliminating ‘the’ or ‘who’ in a query like “The Who” will completely alter its meaning and user intent. 
Later in this chapter, we will discuss how compression techniques overcome the storage cost of posting 
lists for common words.  

Answering The User’s Query 
Now we look at how retrieval is performed for a typical query using an inverted index. Given a query of 
three terms, the first step is to find those terms in the dictionary. Following that, the corresponding 
posting lists are fetched (and transferred to memory if residing on disk). Intersecting the lists on document 
identifiers then retrieves the relevant documents. A key insight is to start with the least frequent term 
since its posting list will be the shortest. Finally, the retrieved set of documents are ranked and re-ordered 
to present to the user. Given the small corpus size (1M), the above operations can be performed on any 
machine in well under a second. Understanding the usage of each computing resource is critical since 
search engines, built over thousands of machines, aim to not only give quality results but to produce these 
results as fast as possible.   
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Disk space is typically required to store the inverted posting lists;  
Disk transfer is used to fetch inverted lists;  
Memory is required for the dictionary and for accumulating documents from the fetched lists; and  
CPU time is required for processing inverted lists and re-ordering them.   

Performance optimizations of each of these components contribute towards several indexing design 
decisions. The choice of data structure for posting lists impacts both storage and CPU time. Search 
engines use both memory and disk to hold the various posting lists. If posting lists are kept in memory, a 
fixed-length array would be wasteful since common terms occur in many more documents (longer posting 
lists) compared to others. Singly linked lists and variable length arrays offer two good alternatives. While 
singly linked lists allow cheap updates such as insertion of documents following a new crawl, variable 
length arrays win in space requirement by avoiding the overhead for pointers. Variable length arrays also 
require less CPU time because of their use of contiguous memory, which in addition enables speedup 
through caching. A potential hybrid scheme is to use a linked list of fixed-length arrays for each term.  
 
When storing posting lists on disk, it is better to store the postings contiguously without explicit pointers. 
This not only conserves space, but also requires only one disk seek to read most posting lists into 
memory. Lets consider an alternative in which lists are composed of a sequence of blocks that are linked 
in some way. Recall that there is a huge variance in size of posting lists; a typical term requires anywhere 
from 100KB to 1MB, a common term requires many times more, but most terms require less than 1KB 
for their lists. This places a severe constraint on the size of a fixed-size block, and significantly degrades 
typical query evaluation time. Apart from demanding additional space for next-block pointers, it also 
complicates update procedures.  

Speeding Up Multi-Term Queries 
As mentioned before, a typical query evaluation requires fetching multiple posting lists and intersecting 
them to quickly find documents that contain all terms. This intersection operation is a crucial one in 
determining query evaluation time. A simple and effective method is the merge algorithm: for a two word 
query, it maintains pointers into both lists and walks through them together by comparing the ordinal 
document identifiers. If they are the same, the document is selected and both pointers are advanced; 
otherwise the one pointing to the smaller identifier advances. Hence the operating time is linear in the size 
of posting lists, which in turn is bounded by the corpus size.  
 
One way to process posting list intersection in sub-linear time is to use a skip list [Pugh, 1990], which 
augments a posting list with pointers that point to a document further down the list. Skip pointers are 
effectively shortcuts that allow us to avoid processing parts of the posting list that will not get intersected. 
Lets first understand how it allows efficient merging. Suppose we’ve stepped through two lists and both 
pointers have matched document 8 on each list. After advancing the pointers, list A points to 16 while list 
B points to 41. At this point we know that documents between 16 and 41 will have no effect on 
intersection. List A will consider the skip pointer at 16 and check if it skips to a document less than or 
equal to 41; if it doesn’t, following the skip pointer avoids all those comparisons with list B’s 41. As more 
skips are made, processing gets even faster.  

A number of variant versions of posting list intersection with skip pointers is possible depending on when 
exactly the skip pointer is checked [Moffat, 1996]. Deciding where to place skip pointers is a bit tricky. 
More skips imply shorter skip spans, and hence more opportunities to skip. But this also means lots of 
comparisons to skip pointers, and lots of space for storing skip pointers. On the other hand, though fewer 
skips require less pointer comparisons, the resulting longer skip spans provide fewer opportunities to skip. 
A simple heuristic, which has been found to work well in practice, is to use √P evenly spaced skip 
pointers for a posting list of length P. 
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Better Understanding of User Intent 
When ranking multi-term queries, one of the prominent signals used is the proximity of different terms on 
a page. The goal is to prefer documents in which query terms appear closest together over the ones in 
which they are spread apart. Proximity of terms is even more critical in the case of phrase queries, where 
relative position of each query term matters. Rather than simply checking if terms are present in a 
document, we also need to check that their positions of appearance in the document are compatible with 
the phrase query being evaluated. This requires working out offsets between words. Posting lists typically 
add word positions to index entries so that the locations of terms in documents can be checked during 
query evaluation. 
 
Creating a positional index significantly expands storage requirements. It also slows down query 
processing since only a tiny fraction of the documents that contain the query terms also contain them as a 
phrase, thereby needing to skip over the positional information in each non-matched posting. This also 
results in processing cost often being dominated by common terms since they occur at the start or in the 
middle of any phrase.  
 
In order to better represent an author’s intent in a document and better match a user’s intent in their query, 
there has been significant work done in phrase-based indexing. However, such indexing is potentially 
expensive. There is no obvious mechanism for accurately identifying which phrases might be used in 
queries, and the number of candidate phrases is enormous since they grow far more rapidly than the 
number of distinct terms. For instance, if a dictionary has 200,000 unique terms, and we consider all 1-5 
word phrases, the phrase dictionary will be of size greater than 3.2*10^26 – much larger than any existing 
system can store in memory or manipulate. In order to have a manageable dictionary, only “good” phrases 
are indexed. A good phrase has terms that often appear together or appear in delimited sections (e.g. titles 
and headings).  Eliminating phrases that are subphrases of longer phrases also helps trim the list.  Some 
phrase-based indexers also keep track of phrases that often appear together in order to generate a related-
phrases list.  This enables a page that mentions “Rat Terrier” to return for a query of “Charlie Feist”1.  For 
phrases composed of rare words, having a phrase index yields little advantage, as processing savings are 
offset by the need to access a much larger dictionary. A successful strategy is to have an index for word 
pairs that begin with a common word and combine it with a word-level inverted index.  
 
In practice, Google (through the TeraGoogle project [Patterson, 2004]), Yahoo! (through the use of 
‘superunits’ [Kapur, 2004]) and startups such as Cuil have experimented with phrase-based indexing. 
Table 1 below summarizes the advantages and disadvantages of Term- and Phrase-based Indexing.  
 

 
Table 1: Term- vs. Phrase-based Indexing 

                                                
1 A feist is a type of small hunting dog, developed in the rural southern United States. 
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LAYING OUT THE INDEX 
In order to handle the load of a modern search engine, a combination of distribution and replication 
techniques is required. Distribution refers to the fact that the document collection and its index are split 
across multiple machines and that answers to the query as a whole must be synthesized from the various 
collection components. Replication (or mirroring) then involves making enough identical copies of the 
system so that the required query load can be handled even during single or multiple machine failures. 
In this section we discuss the various considerations for optimally dividing data across a distributed 
system in the most optimal way.   
 
The decision of how to divide the data includes a balancing act between the number of posting lists, the 
size of each posting list and the penalties involved when multiple posting lists need to accessed at the 
same machine. Indexing phrases implies having many more (and possibly shorter) posting lists as the 
number of terms is significantly fewer than the number of phrases. For this section, we will assume the 
following are constant: 

1. Number of phrases in our dictionary 
2. Number of documents to be indexed across the system 
3. Number of machines 

 
Document vs. Term Based Partitioning 
There are two common ways of distributing index data across a cluster: by document or by term, as 
illustrated here in Figure 4 for the same example as before. Let’s discuss the design of each system before 
examining the advantages and disadvantages of each. 
 

 
Figure 4: Illustrating Document- vs. Phrase-Based Partitioning for Posting Lists shown in Figure 3 

 
Document Based Partitioning 
The simplest distribution regime is to partition the collection and allocate one sub-collection to each of 
the processors. A local index is built for each sub-collection; when queries arrive, they are passed to every 
sub-collection and evaluated against every local index. The sets of sub-collection answers are then 
combined in some way to provide an overall set of answers. An index partitioned by document saves all 
information relevant to that document on a single machine. The number of posting lists on a machine is 
thus dependent on the number of unique terms or phrases that appear in the corpus of documents indexed 
on the given machine. Also, the upper limit on the size of each posting list is the number of documents 
indexed on the machine. In the example above, we have partitioned the document-space into two indices: 
the first index contains all information about documents 1, 2 and 3 while the second index contains all 
information about documents 4, 5 and 6. 
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The benefit of storing all the posting lists for a given document on a single machine is that intersections, 
if needed, can be performed locally. For each query, a master index-server dispatches the query to all the 
workers under it.  Each worker server looks up the query (or intersection) on its local index and returns 
results to the master. In effect, each worker is an independent search engine for the pages that have been 
indexed and stored in its memory. Efficient implementations have a fan-out between 70 and 80.  As the 
size of the index grows, a hierarchical structure must be created.  However, given the expectation of sub-
second load times from search engines, the depth of the lookup tree rarely exceeds two. 
 
A document-partitioned index allows for index construction and document insertion more naturally. One 
of the hosts can be designated to have a dynamic corpus so that it is the only one to rebuild its index. It 
also allows the search service to be provided even when one or more of the hosts are offline. Another 
advantage of a document-partitioned index is that the computationally expensive parts of the process are 
distributed equally across all of the hosts in the computer cluster. 
 
Term Based Partitioning 
The alternative to document based partitioning is term or phrase based partitioning. In a term-partitioned 
index, the index is split into components by partitioning the dictionary. Each processor has full 
information about only a subset of the terms. This implies that to handle a query, only the relevant subset 
of processors needs to respond. Since all postings for a given term are stored on a single machine, posting 
lists in a term-partitioned index are often significantly longer than their document-partitioned 
counterparts. Also, unlike the document-partitioned index case, posting lists for different terms that are in 
the same document can be stored on different machines. Furthermore, each machine can have a different 
number of posting lists stored on it (depending on machine limits and relative posting list sizes). In the 
example in Figure 4, we have partitioned the term-space into two indices: the first index contains all 
information about the terms ‘the’ and ‘to’ while the second index contains all information about the terms 
‘john’, ‘realize’ and ‘algorithm’. 
 
Since all postings for a given term are stored in one place in a cluster, not all servers need to do work for 
each query. The master index-server only contacts the relevant worker server(s). This method requires 
fewer disk seeks and transfer operations during query evaluation than a document-partitioned index 
because each term’s inverted list is stored contiguously on a single machine rather than in fragments 
across multiple machines. If a cluster is managed efficiently, it can retrieve results to multiple query 
requests at the same time.  
 
When comparing this index architecture to its document-partitioned counterpart, we observe a few 
drawbacks. Firstly, intersections cannot always take place locally. If the terms being intersected reside on 
different machines, one of the posting lists needs to be copied over to the other machine in order to do a 
local intersection. Usually, the shorter posting list is copied to reduce network traffic. Secondly, the disk 
transfer operations involve large amounts of data since posting lists are longer. The coordinating machine 
can easily get overloaded and become a bottleneck, thereby starving the other processors of work. Table 
2, below, summarizes the tradeoffs. 
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Table 2: Document- vs. Term-Based Partitioning 

 
Memory vs. Disk Storage 
The next decision we have to make is deciding whether to store the indexing components in memory or 
on disk.  It is tempting to store the dictionary in memory because doing so means that a disk access is 
avoided for every query term. However, if it is large, keeping it in memory reduces the space available for 
caching of other information and may not be beneficial overall.  Fortunately, access to the dictionary is 
only a small component of query processing; if a B-tree-like structure is used with the leaf nodes on disk 
and internal nodes in memory, then a term’s information can be accessed using just a single disk access, 
and only a relatively small amount of main memory is permanently consumed. Lastly, recently or 
frequently accessed query terms can be cached in a separate small table. 
 
Memory Based Index 
The two major search engines today, Google and Bing, store the majority of their search engine indices in 
memory.  The benefit of this architecture is that the local lookup time is almost instantaneous. The 
drawback is that memory is extremely expensive and doesn’t scale infinitely. As the size of the web 
increases, the size of the index increases linearly as does the number of machines needed to hold a copy 
of this index. At serving time, these search engines employ a scatter-gather approach to find the best 
results.  A master index-server dispatches a query lookup to all the worker machines, and waits for 
results.  The index is usually document-partitioned and each mini-search-engine looks up the relevant 
results and returns them to the master index-server.  As they arrive, the master does a merge-sort of the 
results received and returns the final result. Since the index is held in memory, the majority of time in this 
architecture is spent in the data transfers across the network.  
 
While we can imagine an index that is term-partitioned and based in memory, there have been no major 
search engines that have taken such an approach. This is primarily because posting lists of many terms on 
the web are too large to fit in memory.  
 
Disk Based Index 
In the last few years, Google (through the TeraGoogle project [Patterson, 2004]), and startups such as 
Cuil have experimented with disk-based indices wherein data is organized in a way that requires fewer 
lookups and very few network transfers for each query.  Both of these indices have been term-partitioned. 
In these architectures, the time is spent in disk-seeks and block reads rather than in network transfers and 
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merge-sorts. It is possible to have a disk-based and document partitioned index.  No search engine in the 
recent past has built one with this configuration because each lookup would involve multiple disk seeks 
on each machine in the cluster. 
 
The big advantage of a disk-based index is that it can scale more cost-efficiently than its memory-based 
counterpart. Disk is ~100x cheaper than memory while providing significantly larger amounts of storage 
space.  As the number of documents on the web increases, posting lists will get longer in the disk-based 
index.  The increased penalty of traversing longer posting lists is negligible.  On the other hand, in the 
memory-based index, the number of machines needed to support the index increases with the size of the 
index. Hence, query processing time is limited by the per-machine lookup time.  Once the system starts 
slowing down (upper limit on performance), the only way to scale further is to duplicate the index across 
multiple copies of the index and replicate entire clusters.  Table 3 summarizes the advantages and 
disadvantages of these options.  
 

 
Table 3: Memory- vs. Disk-Based Indices 

 
Compressing The Index 
From the discussion so far, it is clear that a web-scale index makes storage space a premium resource for 
search engines. An attractive solution for conserving space is to use a highly compressed inverted index. 
Decompression at query evaluation time, however, made it an expensive proposition in the past since 
CPUs were slower. This trend has reversed and decompression algorithms on modern hardware run so 
fast that the cost of transferring a compressed chunk of data from disk and then decompressing it is 
usually far less expensive than that of transferring the same chunk of data in uncompressed form. As the 
ratio of processor speed to disk speed continues to diverge, reducing posting list sizes promises 
increasingly more performance gains.  
 
Using shorter posting lists has more subtle benefits for a disk-based index. First, it makes it faster to 
transfer data from disk to memory. More importantly, it reduces disk seek times since the index is 
smaller. These reductions more than offset the cost of decompressing, thereby reducing the overall query 
evaluation time. Another beneficial outcome of compression is the increased use of caching. Typically, 
web queries come with a skewed distribution where certain query terms are more common than others. If 
the posting list for a frequently used query term is cached, all queries involving that term can be 
processed entirely in memory and not involve any disk seek. Even for a memory-based index, the cost of 
decompressing is more than offset by the reduction in memory-to-cache transfers of larger uncompressed 
data. Since memory is a more expensive resource than disk space, increased speed due to caching has 
proved to be the primary motivator for using compression in today’s search engines [Zhang, 2007].  
 
In the rest of this section, we will discuss simple compression schemes that can not only keep the penalty 
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of decompressing a posting list small, but also cut the storage cost of an inverted index by almost 75%. 
We begin with the observation that document identifiers for frequent terms are close together. When 
going over documents one by one, we will easily find terms like ‘the’ and ‘to’ in every document, but to 
search for a term like ‘john’ we might have to skip a few documents every now and then. The key insight 
here is that gaps between document identifiers in postings are short, requiring a lot less space to encode 
than say the 20 bits needed in a 1M corpus for document identifier. This is illustrated below using our 
earlier example. Rarer terms, however, occur only once or twice in a collection and hence their gaps will 
have the same order of magnitude as the document identifiers. We will need a variable encoding 
representation that uses fewer bits for short gaps but does not reduce the maximum magnitude of a gap.  
 
Original posting lists:  
the:  ⟨1, 9⟩ ⟨2, 8⟩ ⟨3, 8⟩ ⟨4, 5⟩ ⟨5, 6⟩ ⟨6, 9⟩  
to:   ⟨1, 5⟩ ⟨3, 1⟩ ⟨4, 2⟩ ⟨5, 2⟩ ⟨6, 6⟩  
john: ⟨2, 4⟩ ⟨4, 1⟩ ⟨6, 4⟩  
 
With gaps:  
the:  ⟨1, 9⟩ ⟨1, 8⟩ ⟨1, 8⟩ ⟨1, 5⟩ ⟨1, 6⟩ ⟨1, 9⟩  
to:   ⟨1, 5⟩ ⟨2, 1⟩ ⟨1, 2⟩ ⟨1, 2⟩ ⟨1, 6⟩  
john: ⟨2, 4⟩ ⟨2, 1⟩ ⟨2, 4⟩  
 
Variable byte (VB) encoding [Witten, 1999] uses an integral but adaptive number of bytes depending on 
the size of a gap. The first bit of each byte is a continuation bit, which is flipped only in the last byte of 
the encoded gap. The remaining 7 bits in each byte are used to encode part of the gap. To decode a 
variable byte code, we read a sequence of bytes until the continuation bit flips. We then extract and 
concatenate the 7-bit parts to get the magnitude of a gap. Since it reduces the average magnitude of all 
gaps in a posting list, and is simple to implement, compression techniques benefit greatly from such a 
transformation. The idea of VB encoding can also be applied to larger or smaller units than bytes, such as 
32-bit words and 4-bit nibbles. Larger words decrease the amount of bit manipulation necessary at the 
cost of less effective (or no) compression. Units smaller than bytes achieve even better compression ratios 
but at the cost of more bit manipulation. In general, variable byte codes offer a good compromise between 
compression ratio (space) and speed of decompression (time).  
 
If disk space is at a premium, we can get even better compression ratios by using bit-level encoding 
[Golomb, 1966]. These codes, in particular the closely related g (gamma) and d (delta) codes [Elias, 
1975, Rice 1979], adapt the length of the code on a finer grained bit level. Each codeword has two parts, a 
prefix and a suffix. The prefix indicates the binary magnitude of the value and tells the decoder how many 
bits there are in the suffix part. The suffix indicates the value of the number within the corresponding 
binary range. Inspite of greater compression ratios, these codes are expensive to decode in practice. This 
is primarily because code boundaries usually lie somewhere in the middle of a machine word, making it 
necessary to use bit-level operations such as shifts and masks for decoding. As a result, query processing 
is more time consuming for g and d codes than for variable byte codes.  
 
The choice of coding scheme also affects total fetch-and-decode times, where the byte-wise and word-
aligned codes enjoy a clear advantage. [Scholer, 2002] found that variable byte codes process queries 
twice as fast as either bit-level compressed indexes or uncompressed indexes, but pay for a 30% penalty 
in the compression ratio when compared with the best bit-level compression method. [Trotman, 2003] 
recommended using VB codes unless disk space is a highly scarce resource. Both studies also show that 
compressed indexes are superior to uncompressed indexes in disk usage. In a later study [Anh, 2005], 
variable nibble codes showed 5% to 10% better compression and upto one-third worse effectiveness, in 
comparison to VB codes. These studies clearly demonstrate that using simple and efficient decompression 
methods substantially decreases the response time of a system. Use of codes does, however, present 
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problems for index updates. Since it involves decoding the existing list and recoding with new 
parameters, processing the existing list becomes the dominant cost of the update.  
 
The effectiveness of compression regimes is particularly evident in posting lists for common words, 
which require only a few bits per posting after compression. Let’s consider stop words, for instance. Since 
these words are likely to occur in almost every document, a vast majority of gaps in their postings can be 
represented in just a bit or two. Allowing for the corresponding term frequency (TF) value to be stored in 
at most 10-11 bits (TF of upto ~1000), each posting requires a total of only 12 bits. This is almost a 
quarter of ~40 bits that would be required if the postings were stored uncompressed. Thus, even though 
maintaining a list of stop words seemed like an attractive proposition when the index was uncompressed, 
the additional space savings do not carry over to the size of the compressed index. And even though less 
frequent terms require longer codes for their gaps, their postings get encoded in a few bits on average 
since they require shorter codes for their TF values.  
 
For a positional index, word positions account for a bulk of the size in uncompressed form. For instance, 
it takes almost two bytes to ensure that all positions can be encoded in a document of upto 64K words. 
This cost can be significantly reduced by representing only the difference in positions, just like we did for 
document identifiers. These gaps can either be localized to within each document, or can be global across 
all documents [Zobel, 2006]. In the latter case, two sets of codes are used: one that represents the 
document gaps, and a second to code the position intervals between appearances of a term. While byte-
aligned encoding can be used to quickly decode the document identifiers, more efficient interleaved bit-
level encoding can be used for the positions. They are decoded in parallel when both components are 
required during query evaluation. As discussed above, for common words compression ratios of 1:4 are 
easy to achieve without positional information. In a positional index, however, the average per document 
requirement for common words is much larger because of the comparatively large number of word-gap 
codes that must be stored.  
 
The compression techniques we describe are lossless, that is, all information is preserved. Better 
compression ratios can be achieved with lossy compression, which discards some information. Case 
folding, stemming, and stop word elimination are forms of lossy compression. Similarly, dimensionality 
reduction techniques like latent semantic indexing create compact presentations from which we cannot 
fully restore the original collection. Lossy compression makes sense when the “lost” information is 
unlikely ever to be used by the search system, for instance postings far down the list in an impact-sorted 
index (described next) can be discarded. 
 
Ordering by Highest Impact First 
To reduce disk transfer costs, it is necessary to avoid fetching the posting lists in their entirety. This is 
particularly true for common terms for which posting lists are very long. An attractive option is to 
rearrange the list itself so that only a part of each relevant list is fetched for a typical query. For instance, 
if only the largest term frequency values of a posting list contribute to anything useful, it makes sense to 
store them at the beginning of the list rather than somewhere in the middle of the document-based 
ordering. Ordering by term frequency also allows for the scanning of many posting lists to be terminated 
early because smaller term weights do not change the ranking of the highest ranked documents.  
 
Using a frequency-ordered index, a simple query evaluation algorithm would be to fetch each list in turn 
and process only those values (TF x IDF) that contribute to a threshold S or higher. If disk reads are 
performed one block at a time, rather than on the basis of entire posting list, this strategy significantly 
reduces disk traffic without degrading effectiveness. A practical alternative is to use only the first disk 
block of each list to hold the high impact postings; the remainder of the list can stay sorted in document 
order. These important first blocks could then all be processed before the remainder of any lists, thereby 
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ensuring that all terms are able to contribute relevant documents. One could also interleave their 
respective processing; once the first block of each list has been fetched and is available in memory, the 
list with the highest posting value is selected and its first run of pointers are processed. Attention then 
switches to the list with the next-highest run, which could either be in a different list or in the same list. 
So, each list is visited one or more times, depending on the perceived contribution of that term to the 
query. Since the most significant index information is processed first, query evaluation can be terminated 
by a time bound rather than a threshold.   
 
So how does this new ordering affect storage requirements? Since the inverted lists are read in blocks 
rather than in their entirety, contiguous storage is no longer a necessity. Blocks with high-impact 
information could be clustered on disk, further accelerating query processing. The long lists for common 
terms will never be fully read, saving a great deal of disk traffic. Query evaluation becomes a matter of 
processing as many blocks as can be handled within the time that is available. Let’s look at an example 
posting list from [Zobel, 2006] now to understand the impact on compression, shown here as document 
ordered (<doc id, term frequency>):  
⟨12, 2⟩ ⟨17, 2⟩ ⟨29, 1⟩ ⟨32, 1⟩ ⟨40, 6⟩ ⟨78, 1⟩ ⟨101, 3⟩ ⟨106, 1⟩.  
When the list is reordered by term frequency, it gets transformed:   
⟨40, 6⟩ ⟨101, 3⟩ ⟨12, 2⟩ ⟨17, 2⟩ ⟨29, 1⟩ ⟨32, 1⟩ ⟨78, 1⟩ ⟨106, 1⟩.  
The repeated frequency information can then be factored out into a prefix component with a counter that 
indicates how many documents there are with this same frequency value:  
⟨6 : 1 : 40⟩ ⟨3 : 1 : 101⟩ ⟨2 : 2 : 12, 17⟩ ⟨1 : 4 : 29, 32, 78, 106⟩.  
Not storing the repeated frequencies gives a considerable saving. Finally, if differences of document 
identifiers are taken, we get the following:  
⟨6 : 1 : 40⟩ ⟨3 : 1 : 101⟩ ⟨2 : 2 : 12, 5⟩ ⟨1 : 4 : 29, 3, 46, 28⟩.  
The document gaps within each equal-frequency segment of the list are now on average larger than when 
the document identifiers were sorted, thereby requiring more encoding bits/bytes. However, in 
combination with not storing repeated frequencies, these lists tend to be slightly smaller than document-
sorted lists. The disadvantage, however, is that index updates are now more complex.  
 
Since it made sense to order the posting lists by decreasing term frequency, it makes even more sense to 
order them by their actual impact. Then all that remains is to multiply each posting value by the 
respective query term weight, and then rank the documents. Storing pre-computed floating-point 
document scores is not a good idea, however, since they cannot be compressed as well as integers. Also, 
unlike repeated frequencies, we can no longer cluster exact scores together. In order to retain 
compression, the impact scores are quantized instead, storing one of a small number of distinct values in 
the index. The compressed size is still slightly larger compared to document- and frequency-sorted 
indexes because the average document gaps are bigger. 
 
Managing Multiple Indices 
Webpages are created and refreshed at different rates.  Therefore, there is no reason to crawl and index 
pages uniformly. Some pages are inherently ever-changing (e.g. www.cnn.com) while others won’t 
change for years (e.g. my grandmother’s static homepage that I designed as a birthday gift 10 years ago).  
If a search system can learn, over a period of time, the rate of refreshing of a page, it can crawl and index 
the page only at the optimal rate.  
 
The way we have described search indices so far makes a huge assumption: there will be a single unified 
index of the entire web.  If this assumption was to be held, every single time we re-crawled and re-
indexed a small set of fast-changing pages, we would have to re-compress every posting list for the web 
and push out a new web index.  Re-compressing the entire index is not only time consuming, it is 



 15 

downright wasteful.  Why can we not have multiple indices -- bucketed by rate of refreshing? We can and 
that is what is standard industry practice.  Three commonly used buckets are: 

1. The large, rarely-refreshing pages index 
2. The small, ever-refreshing pages index  
3. The dynamic real-time/news pages index 

At query-time, we do three parallel index lookups and merge the results based on the signals that are 
retrieved. It is common for the large index to be re-crawled and re-indexed as slow as every month, while 
the smaller index is refreshed daily, if not weekly.  The dynamic, real time/news index is updated on a 
per-second basis.   
 
Another feature that can be built into such a multi-tiered index structure is a waterfall approach.  Pages 
discovered in one tier can be passed down to the next tier over time. Pages and domains can be moved 
from the rarely refreshing index to the ever-refreshing index and vice versa as the characteristics of pages 
change over time. Having such a modular and dynamic system is almost necessary to maintain an up-to-
date index of the web. 
 
As pages are re-crawled or re-indexed, older index and crawl file entries can be invalidated. Invalidations 
are often stored in a bit vector. As a page is re-indexed, the appropriate posting lists must be appropriately 
updated. There are many ways to update the posting lists but, in general, the per-list updates should be 
deferred for as long as possible to minimize the number of times each list is accessed. The simplest 
approach is to process as for the merging strategy and, when a memory limit is reached, then proceed 
through the whole index, amending each list in turn. Other possibilities are to update a list only when it is 
fetched in response to a query or to employ a background process that slowly cycles through the in-
memory index, continuously updating entries. In practice, these methods are not as efficient as 
intermittent merge, which processes data on disk sequentially. 
 
Merging is the most efficient strategy for update but has the drawback of requiring significant disk 
overheads. It allows relatively simple recovery as reconstruction requires only a copy of the index and the 
new documents. In contrast, incremental update proceeds in place with some space lost due to 
fragmentation. But recovery in an incremental index may be complex due to the need to track which 
inverted lists have been modified [Motzkin, 1994]. 
 
SCALING THE SYSTEM 
Over the last decade, search engines have gone from crawling tens of millions of documents to over a 
trillion documents [Alpert, 2008].   Building an index of this scale can be a daunting task.  On top of that 
serving hundreds of queries per second against such an index only makes the task harder.  In mid 2004, 
the Google search engine processed more than 200 million queries a day against more than 20TB of 
crawled data, using more than 20,000 computers [Computer School, 2010]. 
 
Web search engines use distributed indexing algorithms for index construction because the data 
collections are too large to efficiently processed on a single machine. The result of the construction 
process is a distributed index that is partitioned across several machines. As discussed in the previous 
section this distributed index can be partitioned according to term or according to document. 
 
While having the right infrastructure is not necessary (and search engines before 2004 did not have many 
of these pieces), they definitely can reduce the pain involved in building such a system. As the 
dependence on parallel processing increased, the need for an efficient parallel programming paradigm 
arose: a framework that provided the highest computational efficiency while maximizing programming 
efficiency [Asanovic, 2008]. In this section, we will summarize the features of a distributed file system 
and a map-shuffle-reduce system used within a web-indexer. 
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Distributed File System 
A search engine is built from a copy of the web: a copy that is stored locally.  If we only care to build a 
search engine of all the text documents on the web, we need to store this data on hundreds, if not 
thousands of machines.  Assuming that the average webpage is 30k, and that there are 100 billion index-
worthy billion webpages (we don’t store and index all because many of them are junk or spam), we need 
3 petabytes of storage just to store the pages.  We know that the index is at least as big as the initial data, 
so we need at least 6 petabytes of storage for our system. If we load each server with 12 1-terabyte disks, 
we need 500 such servers to hold one copy of the web and its index – more if we want to build in some 
level of redundancy.  
 
Search engines are built on top of commodity hardware.  In order to manage such large amounts of data 
across large commodity clusters, a distributed file system that provides efficient remote file access, file 
transfers, and the ability to carry out concurrent independent operations while being extremely fault 
tolerant is essential [Silberschatz, 1994].  While there are many open source distributed file systems such 
as [MooseFS] and [GlusterFS], search engine companies such as Google have built their own proprietary 
distributed file systems [Ghemawat, 2003].  The main motivation for a company such as Google to 
develop its own file system is to optimize the operations that are most used in the web search indexing 
domain. One area where a web indexer differs from a traditional file system user is in the file access 
pattern.  Traditionally, users or systems access files according to the 90/10 law [Smith, 1985] and caching 
provides huge performance gains on re-accesses. A web indexer streams through the data once while 
writing to multiple files in a somewhat random manner.  This implies that if a file system optimized for 
web search indexing can provide efficient random writes (the common operation), it does not need to 
provide extremely efficient caching. 
 
Once we have an efficient distributed file system, we can develop an indexer that can process data across 
a cluster and create a single index representing all the underlying data.  Many of the indexer functions are 
data parallel, that is, the same code is run on independent sets of data.  However, there are parts of the 
process that require related pieces of information from all the machines to be combined to create some of 
the signals (e.g. number of in-links to a given page).  We find that there are three programming constructs 
that are used repeatedly in distributed computing such as building a web index.  The next subsection 
describes such a Map-Shuffle-Reduce framework. 
 
Map-Shuffle-Reduce 
While the constructs of map and reduce have been around since the early days of Common Lisp and the 
idea of shuffling data around a cluster has been done since the beginning of distributed computing, 
Google was the first company to formally describe a framework [Dean, 2004] that did all this while 
providing fault tolerance and ease of use.  In light of the plethora of literature defining this framework, we 
present an extremely short treatment of the definitions and focus on the uses in web-indexing.  
  
Map: The master node chops up the problem into small chunks and assigns each chunk to a worker.  The 
worker either processes the chunk of data with the mapper and returns the result to the master or further 
chops up the input data and assigns it hierarchically.  Mappers output key-value pairs. E.g. when 
extracting anchors from a webpage, the mapper might output <dst_link, src_link> where dst_link is the 
link found on src_link.   
 
Shuffle: This step is optional.  In this step, data is transferred between nodes in order to group key-value 
pairs from the mapper output to in a way that enables proper reducing.  E.g. in extracting anchors, we 
shuffle the output of the anchor extracting mapper so that all the anchors for a given link end up on the 
same machine.  
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Reduce: The master takes the sub-answers and combines them to create the final output. E.g. for the 
anchor extractor, the reducer re-organizes local data to have all the anchors for a given link be contiguous 
and outputs them along with a link that summarizes the findings (number of off-domain anchors, number 
of on-domain anchors, etc). Additionally, we can output a separate file that has just the summary line and 
also an offset into the anchor file so that we can seek to it and traverse all the anchors to a given link on 
demand.   
 
There are many added features and benefits built into such a system.  It hides the complexity of a parallel 
system from the programmer and scales with the size of the problem and available resources.  Also, in the 
case of a crash, recovery is simple: the master simply reschedules the crashed worker’s job to another 
worker.   
 
That said, such a system is not required for many parts of the indexing system.  The use of the map-
shuffle-reduce framework can be avoided for tasks that have a trivial or non-existent shuffle step.  For 
those tasks, a regular program will perform just as well (given that there is a fault tolerant infrastructure 
available).  It is, in particular, not required for the calculation of signals such as PageRank (iterative graph 
traversal / matrix multiplication) or document-partitioned indexing (all the data for a given document is 
available locally and no shuffle is needed). On the other hand, to construct a term-partitioned index, 
shuffling is a key step.  The posting lists from all the worker nodes corresponding to the same term need 
to be combined into a single posting list.  
 
EXTRACTING FEATURES FOR RANKING 
Any modern search engine index spans tens or hundreds of billions of pages, and most queries return 
hundreds of thousands of results. Since the user cannot parse so many documents, it is a pre-requisite to 
rank results from most relevant to least relevant. Earlier, we discussed using term frequency as an 
evidence (or signal) to give more weight to pages that have a term occurring several times over pages 
containing it only once. Other than such statistical measures, search engines extract several other signals 
or features from a page to understand the author’s true intention, as well as key terms. These signals are 
then embedded in each posting for a term. 
 

 
Figure 5: Importance of Basic On-Page Signals on Search Results 
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We will highlight a few of these features using results for ‘home and garden improvements’ on Google, 
as illustrated in Figure 5 above. First note that page structures, such as titles and headings, and url depth 
play a major role. Next we see that most terms occur close to each other in the results, highlighting the 
need for term positions or phrases during indexing. Also important, though not clear from the figure, is 
the respective position of terms on pages; users prefer pages that contain terms higher up in the page. 
Other than these, search engines also learn from patterns across the web and analyze pages for 
undesirable properties, such as presence of offensive terms, lots of outgoing links, or even bad sentence- 
or page-structures. The diversity and size of the web also enables systems to determine statistical features 
such as the average length of a good sentence, ratio of number of outgoing links to number of words on 
page, ratio of visible keywords to those not visible (meta tags or alt text), etc. Recent search start-ups such 
as PowerSet, Cuil and Blekko have attempted to process a page and extract more than term occurances on 
a page.  PowerSet built an engine that extracted meaning out of sentences and could therefore be made 
part of a larger question and answer service. Cuil extracted clusters of phrases from each page to evaluate 
the topics that any page talks about.  Blekko extracts entities such as time and locations in order to allow 
the user to ‘slash’, or filter, results by location, time or other user-defined slashes. 
 
While in a perfect world indexing an author’s intent in the form of on-page analysis should be good 
enough to return good results, there are too many search engine ‘bombers’ who stuff pages with keywords 
to fool an engine. In fact, most basic search engine optimization (SEO) firms focus on these on-page 
features in order to improve rankings for their sites. Hence, off-page signals have increasingly proved to 
be the difference between a good search engine and a not-so-good one. They allow search engines to 
determine what other pages say about a given page (anchor text) and whether the linking page itself is 
reputable (PageRank or HITS). These signals usually require large distributed platforms such as map-
shuffle-reduce because they collect the aggregated information about a given page or domain as presented 
by the rest of the web. The final ranking is thus a blend of static a priori ordering that indicates if a page 
is relevant to queries in general, and a dynamic score which represents the probability that a page is 
relevant to the current query. 
 
In PageRank, each page is assigned a score that simulates the actions of a random web surfer, who with 
probability p is equally likely to follow one of the links out of the current page, or with probability 1 − p 
chooses any other random page to move to. An iterative computation can be used to compute the long-
term probability that such a user is visiting any particular page and that probability is then used to set the 
PageRank. The effect is that pages with many in-links tend to be assigned high PageRank values, 
especially if the source pages themselves have a high PageRank. On the other hand, pages with low in-
link counts, or in- links from only relatively improbable pages, are considered to not hold much authority 
in answering queries. HITS, as described earlier, scores pages as both hubs and authorities, where a good 
hub is one that links to many good authorities, and a good authority is one that is linked from many good 
hubs. Essentially, hubs are useful information aggregations and provide broad categorization of topics, 
while authorities provide detailed information on a narrower facet of a topic. This is also computed 
iteratively using matrix computation based on the connectivity graph. However, instead of pre-computing 
the hub and authority scores at indexing time, each page is assigned a query specific score at serving 
time.  
 
Naturally, spammers nowadays invest considerable time and effort in faking PageRank or Hubs and 
Authorities - this is called link spam. Because spammers will build clusters of webpages that link to each 
other in an effort to create the illusion of pages having good structure and good anchor text coming from 
‘other’ pages, it is important to have good coverage of pages on the index and a good set of trusted seed 
pages. Moreover, they filter out links from known link farms and even penalize sites with links to such 
farms. They rightly figure that webmasters cannot control which sites link to their sites, but they can 
control which sites they link out to. For this reason, links into a site cannot harm the site, but links from a 
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site can be harmful if they link to penalized sites. To counter this, sites have focused on exchanging, 
buying, and selling links, often on a massive scale. Over the years there have been many such SEO 
companies that have tried to aggressively manipulate the effect of optimizations and gaming search 
engine ranking. Google and other search engines have, on some occasions, banned SEOs and their clients 
[Kesmodel, 2005 and Cutts, 2006] for being too aggressive.  
 
FUTURE RESEARCH DIRECTIONS 
While core web-search technology has some interesting algorithms, a lot of work over the last few years 
has gone into building scalable infrastructure, storage, and compression software to support the smooth 
running of these relatively simple algorithms. We’ve described the cutting edge for each of these 
categories earlier in this chapter.  In this section, we will describe some of the new frontiers that search is 
exploring today as well as some areas we believe search will go towards. 
 
Real Time Data and Search 
The advent of services such as Twitter and Facebook in the last few years has made it extremely easy for 
individuals around the world to create information in the form of microposts.  For ease of understanding, 
we will focus on Twitter data in this section.  In 140 characters, users can describe where they are, 
publicize a link to an article they like, or share a fleeting thought.  From a search engine perspective, this 
information is extremely valuable, but as different projects have shown over the last few years, this 
information has extra importance if it is mined and presented to search engine users in real time.  
 
In order to build a real time system, the first prerequisite is access to the raw micropost data.  Luckily for 
the community, Twitter has been extremely good about providing this at affordable prices to anyone who 
has requested it.  Then comes the hard part, dealing with this firehose of data.  At the time of this writing, 
there are ~90M tweets being generated daily, i.e. 1040 tweets per second [Rao, 2010].  At 140 bytes each, 
this corresponds to 12.6GB of tweet-data created in a day. After having dealt with petabytes of data, 
dealing with corpus of this size is trivial for any search engine today. The question to ponder on is what 
can we do with each tweet. Let’s consider a few ideas: 
 

1. Create a Social Graph: One of the beauties of data creation on services like Twitter is the fact that 
each user creates a graph of who they are interested in (who they follow) as well as the topics 
they are interested in (what they tweet about as well as topics in the tweets of the users they 
follow).  The number of followers, too, is a good measure of how well respected that user is.  
Based on this knowledge, it is possible to create a graph of users as well as the thought leaders for 
different topic areas. We will refer to a user’s influence on his her followers as UserRank and a 
user’s influence on a given topic as UserTopicRank.  Startups such as Topsy and Klout have built 
systems that expose this data. 

2. Extract and index the links: Just like a traditional search engine, this would involve parsing each 
tweet, extracting a URL if present, crawling it and indexing it.  The secondary inputs for the 
indexing stage are similar to those needed for webpage indexing.  Instead of having anchor text, 
we have tweet-text. Instead of PageRank, we have UserRank. Additionally, we can use domain 
specific data that we have gathered from our web indexing to determine the quality of domains.  
All of the compression and storage algorithms will work without modification. Google, 
Microsoft, Cuil, OneRiot and Topsy are some of the companies that have worked in this 
direction.  

3. Real-Time Related Topics: Related topics help users discover information about current topics 
better than traditional suggestions. For instance, on the day of the 2008 presidential debate in 
Kodak Theater, showing a related topic of ‘Kodak Theater’ for the query ‘Barack Obama’ would 
be much more meaningful than ‘Michelle Obama’.  However, a query of ‘Byzantine Empire’ 
would be better served with traditional related topics unless there was a new discovery about it.  
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There has been a lot of work on topic clustering [Kanungo, 2002].  Real-time data provides a very 
different use for these algorithms.  By combining co-occurrence and information gain with a time 
decay factor, it is possible to analyze tweets and derive the  related topics in real time are.  

4. Sentiment Analysis: There are many teams such as Scout Labs and The Financial Times’ 
Newssift team working on using NLP (Natural Language Processing) techniques to extract 
sentiment from tweets and other real time sources [Wright, 2009]. Whether this adds any value to 
marketing campaigns or feedback about products and services is yet to be seen.   

 
Social Search and Personalized Web Search 
The amount of interaction between users on the World Wide Web has increased exponentially in the last 
decade.  While much of the interaction is still private (on email, chat, etc.), there has recently been a surge 
in public communications (via Twitter, Facebook, etc). The services providing such public 
communication platforms are also enabling third party applications to keep track of these social 
interactions, through the use of authentication APIs. Only a few companies, so far, have tried to improve 
user search experience through the use of social networking and related data. We discuss couple of such 
efforts below. 
 
Over the last few years, Facebook has become the leader in social networking with over 500M users 
[Zuckerberg, 2010].  Facebook users post a wealth of information on the network that can be used to 
define their online personality.  Through static information such as book and movie interests, and 
dynamic information such as user locations (Facebook Places), status updates and wall posts, a system 
can learn user preferences.  Another feature of significant value is the social circle of a Facebook user, 
e.g. posts of a user’s friends, and of the friends’ friends. From a search engine’s perspective, learning a 
user’s social interactions can greatly help in personalizing the results for him or her.  
 
Facebook has done two things that are impacting the world of search.  First, in September 2009, they 
opened up the data to any third party service as long as their user authenticate themselves using Facebook 
Connect [Zuckerberg, 2008].  Second, as of September 2010, Facebook has started returning web search 
results based on the recommendations of those friends who are within two degrees of the user.  The full 
description of this system can be found in their recently granted patent [Lunt, 2004].  In light of these 
recent developments, little has been done with this newly available data.  
 
In late 2009, Cuil launched a product called Facebook Results [Talbot, 2009], whereby they indexed an 
authenticated user’s, as well as his or her friends’, wall posts, comments and interests. Noting that the 
average user only has 300-400 friends with similar preferences and outlooks on the world, one of the first 
discoveries that Cuil made was the fact that this data was extremely sparse.  This implied that there were 
very few queries for which they could find useful social results. They overcame this limitation by 
extracting related query terms, which allowed for additional social results. A query for “Lady Gaga”,for 
instance, would return friends’ statuses that mentioned “Lady Gaga” but would also return any posts that 
mentioned songs such as “Poker Face” or related artists such as “Rihanna”. Thus, using related data 
greatly enriched the user experience. 
 
While social data is still relatively new to the web, there have been a few movements to use this data in 
ways that create value for web search.  Klout, a San Francisco based startup, measures the influence of a 
user on his or her circle of friends and determines their ‘klout score’ (UserRank), as well as the topics 
they are most influential on (UserTopicRank) [Rao, 2010]. In the future, web search engines can use such 
a signal to determine authority of social data. In October 2010, Bing and Facebook announced the Bing 
Social Layer [Nadella, 2010] offering the ability to search for people on Facebook and to see related links 
that a user’s friends had liked within Bing’s search results.  
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CONCLUSION 
This chapter describes in detail the key indexing technologies behind today’s web-scale search engines. 
We first explained the concept of an inverted index and how it is used to organize all the web’s 
information. Then we highlighted the key challenges in optimizing query processing time so that results 
are retrieved as fast as possible.  This was followed by a discussion on using phrases over terms for better 
understanding of user intent in a query, along with its drawbacks for an indexing system. Harnessing 
together the power of multitudes of machines has been the key to success for today’s search engines. Our 
key focus in this chapter has been to provide a better understanding of how these resources are utilized. 
We started with discussing the design tradeoffs for distributing data across a cluster of machines, 
specifically the cost of data transfers and index management. Next, we evaluated the different storage 
options to hold an index of web scale, specifically highlighting the impact of compression in dramatically 
shrinking index size and its effect on index updates. We also covered strategies that reorder an index for 
faster retrieval. This was followed by an overview on the infrastructure needed to support the growth of 
web search engines to modern scales. Finally, we closed the chapter with potential future directions for 
search engines, particularly in the real-time and social context. Recent efforts on these new data sources 
enrich the user’s web search experience. 
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KEY TERMS & DEFINITIONS 
Anchor Text: Visible, clickable text in a hyperlink. 
 
Corpus: A collection of documents that are used for indexing.  
 
Dictionary: A collection of terms used in an index.  
 
Delta Encoding: Encoding technique that stores differences in values in a sorted array rather than full 
values.  
 
Gamma Encoding: Technique used to encode positive integers when the upper bound is unknown. 
 
Intersection: The operation of finding the overlapping elements of two sets.  In the context of web search, 
posting lists are intersected for multi-term queries. 
 
Inverted Index: A collection of posting lists. 
 
Off Page Signals: Features extracted for a term on a given webpage from the contents of other webpages. 
Example: Presence of a term in anchor text. 
 
On Page Signals: Features extracted for a term on a given webpage from the contents of that page itself.  
Example: Presence of term in Title.  
 
Posting List: A list of dentifiers for documents that contain a given term.   
 
Skip List: An auxiliary data structure to posting lists that enables skipping parts of it during intersection.  
 
Term-Incidence Matrix: A boolean matrix indicating whether or not a given term appears in a given 
document. 
 
Variable Byte Encoding: An encoding technique that uses a variable number of bytes encode an integer.  


