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Abstract

Tree-to-string translation is syntax-aware and

efficient but sensitive to parsing errors. Forest-

to-string translation approaches mitigate the

risk of propagating parser errors into transla-

tion errors by considering a forest of alterna-

tive trees, as generated by a source language

parser. We propose an alternative approach to

generating forests that is based on combining

sub-trees within the first best parse through

binarization. Provably, our binarization for-

est can cover any non-consitituent phrases in

a sentence but maintains the desirable prop-

erty that for each span there is at most one

nonterminal so that the grammar constant for

decoding is relatively small. For the purpose

of reducing search errors, we apply the syn-

chronous binarization technique to forest-to-

string decoding. Combining the two tech-

niques, we show that using a fast shift-reduce

parser we can achieve significant quality gains

in NIST 2008 English-to-Chinese track (1.3

BLEU points over a phrase-based system, 0.8

BLEU points over a hierarchical phrase-based

system). Consistent and significant gains are

also shown in WMT 2010 in the English to

German, French, Spanish and Czech tracks.

1 Introduction

In recent years, researchers have explored a wide

spectrum of approaches to incorporate syntax and

structure into machine translation models. The uni-

fying framework for these models is synchronous

grammars (Chiang, 2005) or tree transducers

(Graehl and Knight, 2004). Depending on whether

or not monolingual parsing is carried out on the

source side or the target side for inference, there are

four general categories within the framework:

• string-to-string (Chiang, 2005; Zollmann and

Venugopal, 2006)

• string-to-tree (Galley et al., 2006; Shen et al.,

2008)

• tree-to-string (Lin, 2004; Quirk et al., 2005;

Liu et al., 2006; Huang et al., 2006; Mi et al.,

2008)

• tree-to-tree (Eisner, 2003; Zhang et al., 2008)

In terms of search, the string-to-x models explore all

possible source parses and map them to the target

side, while the tree-to-x models search over the sub-

space of structures of the source side constrained

by an input tree or trees. Hence, tree-to-x mod-

els are more constrained but more efficient. Mod-

els such as Huang et al. (2006) can match multi-

level tree fragments on the source side which means

larger contexts are taken into account for transla-

tion (Poutsma, 2000), which is a modeling advan-

tage. To balance efficiency and accuracy, forest-to-

string models (Mi et al., 2008; Mi and Huang, 2008)

use a compact representation of exponentially many

trees to improve tree-to-string models. Tradition-

ally, such forests are obtained through hyper-edge

pruning in the k-best search space of a monolin-

gual parser (Huang, 2008). The pruning parameters

that control the size of forests are normally hand-

tuned. Such forests encode both syntactic variants

and structural variants. By syntactic variants, we re-

fer to the fact that a parser can parse a substring into

either a noun phrase or verb phrase in certain cases.



We believe that structural variants which allow more

source spans to be explored during translation are

more important (DeNeefe et al., 2007), while syn-

tactic variants might improve word sense disam-

biguation but also introduce more spurious ambi-

guities (Chiang, 2005) during decoding. To focus

on structural variants, we propose a family of bina-

rization algorithms to expand one single constituent

tree into a packed forest of binary trees containing

combinations of adjacent tree nodes. We control the

freedom of tree node binary combination by restrict-

ing the distance to the lowest common ancestor of

two tree nodes. We show that the best results are

achieved when the distance is two, i.e., when com-

bining tree nodes sharing a common grand-parent.

In contrast to conventional parser-produced-forest-

to-string models, in our model:

• Forests are not generated by a parser but by

combining sub-structures using a tree binarizer.

• Instead of using arbitary pruning parameters,

we control forest size by an integer number that

defines the degree of tree structure violation.

• There is at most one nonterminal per span so

that the grammar constant is small.

Since GHKM rules (Galley et al., 2004) can cover

multi-level tree fragments, a synchronous grammar

extracted using the GHKM algorithm can have syn-

chronous translation rules with more than two non-

terminals regardless of the branching factor of the

source trees. For the first time, we show that simi-

lar to string-to-tree decoding, synchronous binariza-

tion significantly reduces search errors and improves

translation quality for forest-to-string decoding.

To summarize, the whole pipeline is as follows.

First, a parser produces the highest-scored tree for

an input sentence. Second, the parse tree is re-

structured using our binarization algorithm, result-

ing in a binary packed forest. Third, we apply the

forest-based variant of the GHKM algorithm (Mi

and Huang, 2008) on the new forest for rule extrac-

tion. Fourth, on the translation forest generated by

all applicable translation rules, which is not neces-

sarily binary, we apply the synchronous binarization

algorithm (Zhang et al., 2006) to generate a binary

translation forest. Finally, we use a bottom-up de-

coding algorithm with intergrated LM intersection

using the cube pruning technique (Chiang, 2005).

The rest of the paper is organized as follows. In

Section 2, we give an overview of the forest-to-

string models. In Section 2.1, we introduce a more

efficient and flexible algorithm for extracting com-

posed GHKM rules based on the same principle as

cube pruning (Chiang, 2007). In Section 3, we in-

troduce our source tree binarization algorithm for

producing binarized forests. In Section 4, we ex-

plain how to do synchronous rule factorization in a

forest-to-string decoder. Experimental results are in

Section 5.

2 Forest-to-string Translation

Forest-to-string models can be described as

e = Y( arg max
d∈D(T ), T∈F (f)

P (d|T ) ) (1)

where f stands for a source string, e stands for a tar-

get string, F stands for a forest, D stands for a set

of synchronous derivations on a given tree T , and

Y stands for the target side yield of a derivation.

The search problem is finding the derivation with

the highest probability in the space of all deriva-

tions for all parse trees for an input sentence. The

log probability of a derivation is normally a lin-

ear combination of local features which enables dy-

namic programming to find the optimal combination

efficiently. In this paper, we focus on the models

based on the Synchronous Tree Substitution Gram-

mars (STSG) defined by Galley et al. (2004). In con-

trast to a tree-to-string model, the introduction of F

augments the search space systematically. When the

first-best parse is wrong or no good translation rules

are applicable to the first-best parse, the model can

recover good translations from alternative parses.

In STSG, local features are defined on tree-to-

string rules, which are synchronous grammar rules

defining how a sequence of terminals and nontermi-

nals on the source side translates to a sequence of

target terminals and nonterminals. One-to-one map-

ping of nonterminals is assumed. But terminals do

not necessarily need to be aligned. Figure 1 shows a

typical English-Chinese tree-to-string rule with a re-

ordering pattern consisting of two nonterminals and

different numbers of terminals on the two sides.



VP

VBD

was

VP-C

.x1:VBN PP

P

by

.x2:NP-C

→
bei

被
x2 x1

Figure 1: An example tree-to-string rule.

Forest-to-string translation has two stages. The

first stage is rule extraction on word-aligned parallel

texts with source forests. The second stage is rule

enumeration and DP decoding on forests of input

strings. In both stages, at each tree node, the task on

the source side is to generate a list of tree fragments

by composing the tree fragments of its children. We

propose a cube-pruning style algorithm that is suit-

able for both rule extraction during training and rule

enumeration during decoding.

At the highest level, our algorithm involves three

steps. In the first step, we label each node in the in-

put forest by a boolean variable indicating whether it

is a site of interest for tree fragment generation. If it

is marked true, it is an admissible node. In the case

of rule extraction, a node is admissible if and only if

it corresponds to a phrase pair according to the un-

derlying word alignment. In the case of decoding,

every node is admissible for the sake of complete-

ness of search. An initial one-node tree fragment is

placed at each admissible node for seeding the tree

fragment generation process. In the second step,

we do cube-pruning style bottom-up combinations

to enumerate a pruned list of tree fragments at each

tree node. In the third step, we extract or enumerate-

and-match tree-to-string rules for the tree fragments

at the admissible nodes.

2.1 A Cube-pruning-inspired Algorithm for

Tree Fragment Composition

Galley et al. (2004) defined minimal tree-to-string

rules. Galley et al. (2006) showed that tree-to-string

rules made by composing smaller ones are impor-

tant to translation. It can be understood by the anal-

ogy of going from word-based models to phrase-

based models. We relate composed rule extraction

to cube-pruning (Chiang, 2007). In cube-pruning,

the process is to keep track of the k-best sorted lan-

guage model states at each node and combine them

bottom-up with the help of a priority queue. We

can imagine substituting k-best LM states with k

composed rules at each node and composing them

bottom-up. We can also borrow the cube pruning

trick to compose multiple lists of rules using a pri-

ority queue to lazily explore the space of combina-

tions starting from the top-most element in the cube

formed by the lists.

We need to define a ranking function for com-

posed rules. To simulate the breadth-first expansion

heuristics of Galley et al. (2006), we define the fig-

ure of merit of a tree-to-string rule as a tuple m =
(h, s, t), where h is the height of a tree fragment,

s is the number of frontier nodes, i.e., bottom-level

nodes including both terminals and non-terminals,

and t is the number of terminals in the set of frontier

nodes. We define an additive operator +:

m1 + m2

= ( max{h1, h2} + 1, s1 + s2, t1 + t2 )

and a min operator based on the order <:

m1 < m2 ⇐⇒







h1 < h2 ∨
h1 = h2 ∧ s1 < s2 ∨
h1 = h2 ∧ s1 = s2 ∧ t1 < t2

The + operator corresponds to rule compositions.

The < operator corresponds to ranking rules by their

sizes. A concrete example is shown in Figure 2,

in which case the monotonicity property of (+, <)
holds: if ma < mb, ma +mc < mb +mc. However,

this is not true in general for the operators in our def-

inition, which implies that our algorithm is indeed

like cube-pruning: an approximate k-shortest-path

algorithm.

3 Source Tree Binarization

The motivation of tree binarization is to factorize

large and rare structures into smaller but frequent

ones to improve generalization. For example, Penn

Treebank annotations are often flat at the phrase

level. Translation rules involving flat phrases are un-

likely to generalize. If long sequences are binarized,
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VBD VP-C

(2, 2, 0) VP

VBD VP-C

VPB PP

(3, 3, 0) VP

VBD VP-C

VPB PP

P NP-C

(4, 4, 1)
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VBD

was
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(3, 2, 1) VP
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was

VP-C

VPB PP

(3, 3, 1) VP

VBD

was

VP-C

VPB PP

P NP-C

(4, 4, 2)

Figure 2: Tree-to-string rule composition as cube-pruning. The left shows two lists of composed rules sorted by their

geometric measures (height, # frontiers,# frontier terminals), under the gluing rule of VP → VBD VP−C.

The right part shows a cube view of the combination space. We explore the space from the top-left corner to the

neighbors.

the commonality of subsequences can be discov-

ered. For example, the simplest binarization meth-

ods left-to-right, right-to-left, and head-out explore

sharing of prefixes or suffixes. Among exponentially

many binarization choices, these algorithms pick a

single bracketing structure for a sequence of sibling

nodes. To explore all possible binarizations, we use

a CYK algorithm to produce a packed forest of bi-

nary trees for a given sibling sequence.

With CYK binarization, we can explore any span

that is nested within the original tree structure, but

still miss all cross-bracket spans. For example,

translating from English to Chinese, The phrase

“There is” should often be translated into one verb

in Chinese. In a correct English parse tree, however,

the subject-verb boundary is between “There” and

“is”. As a result, tree-to-string translation based on

constituent phrases misses the good translation rule.

The CYK-n binarization algorithm shown in Al-

gorithm 1 is a parameterization of the basic CYK

binarization algorithm we just outlined. The idea is

that binarization can go beyond the scope of parent

nodes to more distant ancestors. The CYK-n algo-

rithm first annotates each node with its n nearest

ancestors in the source tree, then generates a bina-

rization forest that allows combining any two nodes

with common ancestors. The ancestor chain labeled

at each node licenses the node to only combine with

nodes having common ancestors in the past n gener-

ations.

The algorithm creates new tree nodes on the fly.

New tree nodes need to have their own states in-

dicated by a node label representing what is cov-

ered internally by the node and an ancestor chain

representing which nodes the node attaches to ex-

ternally. Line 22 and Line 23 of Algorithm 1 up-

date the label and ancestor annotations of new tree

nodes. Using the parsing semiring notations (Good-

man, 1999), the ancestor computation can be sum-

marized by the (∩,∪) pair. ∩ produces the ances-

tor chain of a hyper-edge. ∪ produces the ancestor

chain of a hyper-node. The node label computation

can be summarized by the (concatenate, min) pair.

concatenate produces a concatenation of node la-

bels. min yields the label with the shortest length.

A tree-sequence (Liu et al., 2007) is a sequence of

sub-trees covering adjacent spans. It can be proved

that the final label of each new node in the forest

corresponds to the tree sequence which has the min-

imum length among all sequences covered by the

node span. The ancestor chain of a new node is the

common ancestors of the nodes in its minimum tree

sequence.

For clarity, we do full CYK loops over all O(|w|2)
spans and O(|w|3) potential hyper-edges, where |w|
is the length of a source string. In reality, only de-

scendants under a shared ancestor can combine. If

we assume trees have a bounded branching factor

b, the number of descendants after n generations is

still bounded by a constant c = bn. The algorithm is

O(c3 · |w|), which is still linear to the size of input

sentence when the parameter n is a constant.



VP

VBD+VBN

VBD

was

VBN

PP

P

by

NP-C

VP

VBD

was

VP-C

VBN+P

VBN P

by

NP-C

(a) (b)

VP

VBD+VBN+P

VBD+VBN

VBD

was

VBN

P

by

NP-C

VP

VBD+VBN+P

VBD

was

VBN+P

VBN P

by

NP-C

(c) (d)

1 2 3 4

0 VBD VBD+VBN VBD+VBN+P VP

1 VBN VBN+P VP-C

2 P PP

3 NP-C

Figure 3: Alternative binary parses created for the origi-

nal tree fragment in Figure 1 through CYK-2 binarization

(a and b) and CYK-3 binarization (c and d). In the chart

representation at the bottom, cells with labels containing

the concatenation symbol + hold nodes created through

binarization.

Figure 3 shows some examples of alternative trees

generated by the CYK-n algorithm. In this example,

standard CYK binarization will not create any new

trees since the input is already binary. The CYK-2
and CYK-3 algorithms discover new trees with an

increasing degree of freedom.

4 Synchronous Binarization for

Forest-to-string Decoding

In this section, we deal with binarization of transla-

tion forests, also known as translation hypergraphs

(Mi et al., 2008). A translation forest is a packed

forest representation of all synchronous derivations

composed of tree-to-string rules that match the

source forest. Tree-to-string decoding algorithms

work on a translation forest, rather than a source for-

est. A binary source forest does not necessarily al-

ways result in a binary translation forest. In the tree-

to-string rule in Figure 4, the source tree is already

ADJP

RB+JJ

x0:RB JJ

responsible

PP

IN

for

NP-C

NPB

DT

the

x1:NN

x2:PP

→ x0
fuze

负责
x2

de

的
x1

ADJP

RB+JJ

x0:RB JJ

responsible

x1:PP

→ x0
fuze

负责
x1

PP

IN

for

NP-C

NPB

DT

the

x0:NN

x1:PP

→ x1
de

的
x0

Figure 4: Synchronous binarization for a tree-to-string

rule. The top rule can be binarized into two smaller rules.

binary with the help of source tree binarization, but

the translation rule involves three variables in the set

of frontier nodes. If we apply synchronous binariza-

tion (Zhang et al., 2006), we can factorize it into

two smaller translation rules each having two vari-

ables. Obviously, the second rule, which is a com-

mon pattern, is likely to be shared by many transla-

tion rules in the derivation forest. When beams are

fixed, search goes deeper in a factorized translation

forest.

The challenge of synchronous binarization for a

forest-to-string system is that we need to first match

large tree fragments in the input forest as the first

step of decoding. Our solution is to do the matching

using the original rules and then run synchronous

binarization to break matching rules down to factor

rules which can be shared in the derivation forest.

This is different from the offline binarization scheme

described in (Zhang et al., 2006), although the core

algorithm stays the same.

5 Experiments

We ran experiments on public data sets for English

to Chinese, Czech, French, German, and Spanish



Algorithm 1 The CYK-n Binarization Algorithm

1: function CYKBINARIZER(T,n)

2: for each tree node ∈ T in bottom-up topological order do

3: Make a copy of node in the forest output F
4: Ancestors[node] = the nearest n ancestors of node

5: Label [node] = the label of node in T

6: L← the length of the yield of T
7: for k = 2...L do

8: for i = 0, ..., L− k do

9: for j = i + 1, ..., i + k − 1 do

10: lnode ← Node[i, j]; rnode ← Node[j, i + k]
11: if Ancestors[lnode] ∩ Ancestors[rnode] 6= ∅ then

12: pnode ← GETNODE(i, i + k)
13: ADDEDGE(pnode, lnode, rnode)

return F
14: function GETNODE(begin, end)

15: if Node[begin, end] /∈ F then

16: Create a new node for the span (begin, end)
17: Ancestors[node] = ∅
18: Label [node] = the sequence of terminals in the span (begin, end) in T
19:

return Node[begin, end]

20: function ADDEDGE(pnode, lnode, rnode)

21: Add a hyper-edge from lnode and rnode to pnode
22: Ancestors[pnode] = Ancestors[pnode] ∪ (Ancestors[lnode] ∩Ancestors[rnode])
23: Label [pnode] = min{Label[pnode], CONCATENATE(Label[lnode], Label[rnode])}

translation to evaluate our methods.

5.1 Setup

For English-to-Chinese translation, we used all the

allowed training sets in the NIST 2008 constrained

track. For English to the European languages, we

used the training data sets for WMT 2010 (Callison-

Burch et al., 2010). For NIST, we filtered out sen-

tences exceeding 80 words in the parallel texts. For

WMT, the filtering limit is 60. There is no filtering

on the test data set. Table 1 shows the corpus statis-

tics of our bilingual training data sets.

Source Words Target Words

English-Chinese 287M 254M

English-Czech 66M 57M

English-French 857M 996M

English-German 45M 43M

English-Spanish 216M 238M

Table 1: The Sizes of Parallel Texts.

At the word alignment step, we did 6 iterations

of IBM Model-1 and 6 iterations of HMM. For

English-Chinese, we ran 2 iterations of IBM Model-

4 in addition to Model-1 and HMM. The word align-

ments are symmetrized using the “union” heuris-

tics. Then, the standard phrase extraction heuristics

(Koehn et al., 2003) were applied to extract phrase

pairs with a length limit of 6. We ran the hierar-

chical phrase extraction algorithm with the standard

heuristics of Chiang (2005). The phrase-length limit

is interpreted as the maximum number of symbols

on either the source side or the target side of a given

rule. On the same aligned data sets, we also ran the

tree-to-string rule extraction algorithm described in

Section 2.1 with a limit of 16 rules per tree node.

The default parser in the experiments is a shift-

reduce dependency parser (Nivre and Scholz, 2004).

It achieves 87.8% labelled attachment score and

88.8% unlabeled attachment score on the standard

Penn Treebank test set. We convert dependency

parses to constituent trees by propagating the part-

of-speech tags of the head words to the correspond-

ing phrase structures.

We compare three systems: a phrase-based sys-

tem (Och and Ney, 2004), a hierarchical phrase-

based system (Chiang, 2005), and our forest-to-

string system with different binarization schemes. In

the phrase-based decoder, jump width is set to 8. In

the hierarchical decoder, only the glue rule is applied



to spans longer than 10. For the forest-to-string sys-

tem, we do not have such length-based reordering

constraints.

We trained two 5-gram language models with

Kneser-Ney smoothing for each of the target lan-

guages. One is trained on the target side of the par-

allel text, the other is on a corpus provided by the

evaluation: the Gigaword corpus for Chinese and

news corpora for the others. Besides standard fea-

tures (Och and Ney, 2004), the phrase-based decoder

also uses a Maximum Entropy phrasal reordering

model (Zens and Ney, 2006). Both the hierarchi-

cal decoder and the forest-to-string decoder only use

the standard features. For feature weight tuning, we

do Minimum Error Rate Training (Och, 2003). To

explore a larger n-best list more efficiently in train-

ing, we adopt the hypergraph-based MERT (Kumar

et al., 2009).

To evaluate the translation results, we use BLEU

(Papineni et al., 2002).

5.2 Translation Results

Table 2 shows the scores of our system with the

best binarization scheme compared to the phrase-

based system and the hierarchical phrase-based sys-

tem. Our system is consistently better than the other

two systems in all data sets. On the English-Chinese

data set, the improvement over the phrase-based sys-

tem is 1.3 BLEU points, and 0.8 over the hierarchi-

cal phrase-based system. In the tasks of translat-

ing to European languages, the improvements over

the phrase-based baseline are in the range of 0.5 to

1.0 BLEU points, and 0.3 to 0.5 over the hierar-

chical phrase-based system. All improvements ex-

cept the bf2s and hier difference in English-Czech

are significant with confidence level above 99% us-

ing the bootstrap method (Koehn, 2004). To demon-

strate the strength of our systems including the two

baseline systems, we also show the reported best re-

sults on these data sets from the 2010 WMT work-

shop. Our forest-to-string system (bf2s) outperforms

or ties with the best ones in three out of four lan-

guage pairs.

5.3 Different Binarization Methods

The translation results for the bf2s system in Ta-

ble 2 are based on the cyk binarization algorithm

with bracket violation degree 2. In this section, we

BLEU

dev test

English-Chinese pb 29.7 39.4

hier 31.7 38.9

bf2s 31.9 40.7∗∗

English-Czech wmt best - 15.4

pb 14.3 15.5

hier 14.7 16.0

bf2s 14.8 16.3∗

English-French wmt best - 27.6

pb 24.1 26.1

hier 23.9 26.1

bf2s 24.5 26.6∗∗

English-German wmt best - 16.3

pb 14.5 15.5

hier 14.9 15.9

bf2s 15.2 16.3∗∗

English-Spanish wmt best - 28.4

pb 24.1 27.9

hier 24.2 28.4

bf2s 24.9 28.9∗∗

Table 2: Translation results comparing bf2s, the

binarized-forest-to-string system, pb, the phrase-based

system, and hier, the hierarchical phrase-based system.

For comparison, the best scores from WMT 2010 are also

shown. ∗∗ indicates the result is significantly better than

both pb and hier. ∗ indicates the result is significantly

better than pb only.

vary the degree to generate forests that are incremen-

tally augmented from a single tree. Table 3 shows

the scores of different tree binarization methods for

the English-Chinese task.

It is clear from reading the table that cyk-2 is the

optimal binarization parameter. We have verified

this is true for other language pairs on non-standard

data sets. We can explain it from two angles. At

degree 2, we allow phrases crossing at most one

bracket in the original tree. If the parser is reason-

ably good, crossing just one bracket is likely to cover

most interesting phrases that can be translation units.

From another point of view, enlarging the forests

entails more parameters in the resulting translation

model, making over-fitting likely to happen.

5.4 Binarizer or Parser?

A natural question is how the binarizer-generated

forests compare with parser-generated forests in

translation. To answer this question, we need a



BLEU

rules dev test

no binarization 378M 28.0 36.3

head-out 408M 30.0 38.2

cyk-1 527M 31.6 40.5

cyk-2 803M 31.9 40.7

cyk-3 1053M 32.0 40.6

cyk-∞ 1441M 32.0 40.3

Table 3: Comparing different source tree binarization

schemes for English-Chinese translation, showing both

BLEU scores and model sizes. The rule counts include

normal phrases which are used at the leaf level during

decoding.

parser that can generate a packed forest. Our fast

deterministic dependency parser does not generate

a packed forest. Instead, we use a CRF constituent

parser (Finkel et al., 2008) with state-of-the-art ac-

curacy. On the standard Penn Treebank test set, it

achieves an F-score of 89.5%. It uses a CYK algo-

rithm to do full dynamic programming inference, so

is much slower. We modified the parser to do hyper-

edge pruning based on posterior probabilities. The

parser preprocesses the Penn Treebank training data

through binarization. So the packed forest it pro-

duces is also a binarized forest. We compare two

systems: one is using the cyk-2 binarizer to generate

forests; the other is using the CRF parser with prun-

ing threshold e−p, where p = 2 to generate forests.1

Although the parser outputs binary trees, we found

cross-bracket cyk-2 binarization is still helpful.

BLEU

dev test

cyk-2 14.9 16.0

parser 14.7 15.7

Table 4: Binarized forests versus parser-generated forests

for forest-to-string English-German translation.

Table 4 shows the comparison of binarization for-

est and parser forest on English-German translation.

The results show that cyk-2 forest performs slightly

1All hyper-edges with negative log posterior probability

larger than p are pruned. In Mi and Huang (2008), the thresh-

old is p = 10. The difference is that they do the forest pruning

on a forest generated by a k-best algorithm, while we do the

forest-pruning on the full CYK chart. As a result, we need more

aggressive pruning to control forest size.

better than the parser forest. We have not done full

exploration of forest pruning parameters to fine-tune

the parser-forest. The speed of the constituent parser

is the efficiency bottleneck. This actually demon-

strates the advantage of the binarizer plus forest-to-

string scheme. It is flexible, and works with any

parser that generates projective parses. It does not

require hand-tuning of forest pruning parameters for

training.

5.5 Synchronous Binarization

In this section, we demonstrate the effect of syn-

chronous binarization for both tree-to-string and

forest-to-string translation. The experiments are on

the English-Chinese data set. The baseline systems

use k-way cube pruning, where k is the branching

factor, i.e., the maximum number of nonterminals on

the right-hand side of any synchronous translation

rule in an input grammar. The competing system

does online synchronous binarization as described in

Section 4 to transform the grammar intersected with

the input sentence to the minimum branching factor

k′ (k′ < k), and then applies k′-way cube pruning.

Typically, k′ is 2.

BLEU

dev test

head-out cube pruning 29.2 37.0

+ synch. binarization 30.0 38.2

cyk-2 cube pruning 31.7 40.5

+ synch. binarization 31.9 40.7

Table 5: The effect of synchronous binarization for tree-

to-string and forest-to-string systems, on the English-

Chinese task.

Table 5 shows that synchronous binarization does

help reduce search errors and find better translations

consistently in all settings.

6 Related Work

The idea of concatenating adjacent syntactic cate-

gories has been explored in various syntax-based

models. Zollmann and Venugopal (2006) aug-

mented hierarchial phrase based systems with joint

syntactic categories. Liu et al. (2007) proposed tree-

sequence-to-string translation rules but did not pro-

vide a good solution to place joint subtrees into con-

nection with the rest of the tree structure. Zhang et



al. (2009) is the closest to our work. But their goal

was to augment a k-best forest. They did not bina-

rize the tree sequences. They also did not put con-

straint on the tree-sequence nodes according to how

many brackets are crossed.

Wang et al. (2007) used target tree binarization to

improve rule extraction for their string-to-tree sys-

tem. Their binarization forest is equivalent to our

cyk-1 forest. In contrast to theirs, our binarization

scheme affects decoding directly because we match

tree-to-string rules on a binarized forest.

Different methods of translation rule binarization

have been discussed in Huang (2007). Their argu-

ment is that for tree-to-string decoding target side

binarization is simpler than synchronous binariza-

tion and works well because creating discontinous

source spans does not explode the state space. The

forest-to-string senario is more similar to string-to-

tree decoding in which state-sharing is important.

Our experiments show that synchronous binariza-

tion helps significantly in the forest-to-string case.

7 Conclusion

We have presented a new approach to tree-to-string

translation. It involves a source tree binarization

step and a standard forest-to-string translation step.

The method renders it unnecessary to have a k-best

parser to generate a packed forest. We have demon-

strated state-of-the-art results using a fast parser and

a simple tree binarizer that allows crossing at most

one bracket in each binarized node. We have also

shown that reducing search errors is important for

forest-to-string translation. We adapted the syn-

chronous binarization technqiue to improve search

and have shown significant gains. In addition, we

also presented a new cube-pruning-style algorithm

for rule extraction. In the new algorithm, it is easy to

adjust the figure-of-merit of rules for extraction. In

the future, we plan to improve the learning of trans-

lation rules with binarized forests.
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