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ABSTRACT
This paper presents general techniques for speeding up large-

scale SVM training when using sequence kernels. Our tech-

niques apply to the family of kernels commonly used in

a variety of natural language processing applications, in-

cluding speech recognition, speech synthesis, and machine

translation. We report the results of large-scale experiments

demonstrating dramatic reduction of the training time, typ-

ically by several orders of magnitude.

Categories and Subject Descriptors
G.1.6 [Optimization]: Metrics—Constrained optimization,

performance measures; F.4.3 [Formal Languages]: Met-

rics—Algebraic language theory, Classes defined by gram-

mars or automata, Operations on languages

General Terms
Algorithms,Theory

Keywords
SVMs, optimization, kernels, rational kernels, finite automata,

weighted automata, weighted transducers

1. INTRODUCTION
Sequence kernels are similarity measures between sequences.

When the kernels are positive semi-definite, PSD, they im-

plicitly define an inner product in a Hilbert space where

large-margin methods can be used for learning and estima-

tion [22, 23]. These kernels can then be combined with al-

gorithms such as support vector machines (SVMs) [3, 8, 25]

or other kernel-based algorithms to form effective learning

techniques.

Sequence kernels have been successfully used in a variety of

applications in computational biology, natural language pro-

cessing, and other sequence processing tasks, e.g., n-gram
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kernels, gappy n-gram kernels [19], mismatch kernels [17],

locality-improved kernels [27], domain-based kernels [1], con-

volutions kernels for strings [13], and tree kernels [6].

However, scaling algorithms such as SVMs based on these

kernels to large-scale problems remains a challenge. Both

time and space complexity represent serious issues, which

often make training impossible. One solution in such cases

consists of using approximation techniques for the kernel

matrix, e.g., [12, 2, 26, 16] or to use early stopping for op-

timization algorithms [24]. However, these approximations

can of course result in some loss in accuracy, which, depend-

ing on the size of the training data and the difficulty of the

task, can be significant.

This paper presents general techniques for speeding up large-

scale SVM training when using sequence kernels, without

resorting to such approximations. Our techniques apply to

all rational kernels, that is sequence kernels that can be

represented by weighted automata and transducers [7]. As

pointed out by these authors, this family of kernels includes

the sequence kernels commonly used in computational biol-

ogy, natural language processing, or other sequence process-

ing tasks, in particular all those already mentioned. Thus

our techniques apply to all commonly used sequence ker-

nels. We show, using the properties of rational kernels,

that, remarkably, techniques similar to those used by [14]

for the design of more efficient coordinate descent training

algorithms for linear kernels can be used to design faster al-

gorithms with significantly better computational complexity

for SVMs combined with rational kernels.

These techniques were used by [14] to achieve a substantial

speed-up of SVM training in the case of linear kernels, with

very clear gains over the already optimized and widely used

LIBSVM software library [5], and served as the basis for the

design of the LIBLINEAR library [10]. We show experimen-

tally that our techniques also lead to a substantial speed-up

of training with sequence kernels. In most cases, we observe

an improvement by several orders of magnitude.

The remainder of the paper is structured as follows. We

start with a brief introduction of weighted transducers and

rational kernels (Section 2), including definitions and prop-



erties relevant to the following sections. Section 3 presents

an overview of the coordinate descent solution by [14] for

SVM optimization. Section 4 shows how a similar solution

can be derived in the case of rational kernels. The analysis

of the complexity and the implementation of this technique

are described and discussed in Section 5. In section 6, we

report the results of experiments with a large dataset and

with several types of kernels demonstrating the substantial

reduction of training time using our techniques.

2. PRELIMINARIES
This section briefly introduces the essential concepts and

definitions related to weighted transducers and rational ker-

nels. For the most part, we adopt the definitions and ter-

minology of [7], but we also introduce a linear operator that

will be needed for our analysis.

2.1 Weighted transducers and automata
Weighted transducers are finite-state transducers in which

each transition carries some weight in addition to the input

and output labels. The weight set has the structure of a

semiring that is a ring that may lack negation. In this paper,

we only consider weighted transducers over the real semiring

(R+,+,×, 0, 1).

Figure 1(a) shows an example of a weighted finite-state trans-

ducer over the real semiring. In this figure, the input and

output labels of a transition are separated by a colon de-

limiter and the weight is indicated after the slash separator.

A weighted transducer has a set of initial states represented

in the figure by a bold circle and a set of final states, rep-

resented by double circles. A path from an initial state to

a final state is an accepting path. The input label of an

accepting path is obtained by concatenating together the

input symbols along the path from the initial to the final

state. Similarly for the output label of an accepting path.

The weight of an accepting path is computed by multiplying

the weights of its constituent transitions and multiplying this

product by the weight of the initial state of the path (which

equals one in our work) and by the weight of the final state of

the path (displayed after the slash in the figure). The weight

associated by a weighted transducer U to a pair of strings

(x,y) ∈ Σ∗ × Σ∗ is denoted by U(x,y) and is obtained by

summing the weights of all accepting paths with input label

x and output label y.

A weighted automaton A can be defined as a weighted trans-

ducer with identical input and output labels, for any transi-

tion. Since only pairs of the form (x,x) can have a non-zero

weight, we denote the weight associated by A to (x,x) by

A(x) and refer it as the weight associated by A to x. Simi-

larly, in the graph representation of weighted automata, the

output (or input) label is omitted. Figure 1(b) shows an

example of a weighted automaton. Omitting the input

labels of a weighted transducer U results in a weighted au-

tomaton A which is said to be the output projection of U,

A = Π2(U). The automaton in Figure 1(b) is the output
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Figure 1: (a) Example of weighted transducer U. (b)

Example of weighted automaton A. In this example,

A can be obtained from U by projection on the out-

put and U(aab, baa) = A(baa) = 3×1×4×2+3×2×3×2.

projection of the weighted transducer in Figure 1(a).

The standard operations of sum +, product or concatenation

·, and Kleene-closure ∗ can be defined for weighted transduc-

ers [21]: for any pair of strings (x,y),

(U1 +U2)(x,y) = U1(x,y) +U2(x,y)

(U1 ·U2)(x,y) =
∑

x1x2=x
y1y2=y

U1(x1,y1)×U2(x2,y2)

(U∗)(x,y) =
∑

n≥0

(Un)(x,y).

For any transducer U and any real number γ, we denote by

γU a weighted transducer obtained from U by multiplying

the final weights by γ. Thus, by definition, (γU)(x,y) =

γ(U(x,y)) for any x,y ∈ Σ∗.

The composition of two weighted transducers U1 and U2

with matching input and output alphabets Σ, is a weighted

transducer denoted by U1 ◦U2 when the semiring is com-

mutative and the sum:

(U1 ◦U2)(x,y) =
∑

z∈Σ∗

U1(x, z)×U2(z,y)

is well-defined and in R for all x,y [21]. It can be computed

in time O(|U1||U2|)) where we denote by |U| the sum of the

number of states and transitions of a transducer U. In the

following, we shall use the distributivity of + and multipli-

cation by a real number, γ, over the composition of weighted

transducers:

(U1 ◦U3) + (U2 ◦U3) = (U1 +U2) ◦U3

γ(U1 ◦U2) = ((γU1) ◦U2) = (U1 ◦ (γU2)).

For any transducer U, U−1 denotes its inverse, that is the

transducer obtained from U by swapping the input and out-

put labels of each transition. For all x,y ∈ Σ∗, we have

U−1(x,y) = U(y,x).

We introduce a linear operator D over the set of weighted
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Figure 2: Counting transducer T2 for Σ = {a, b}.

transducers. For any transducer U, we define D(U) as the

sum of the weights of all accepting paths of the weighted

transducer U:

D(U) =
∑

π∈Acc(U)

w[π],

where Acc(U) denotes the accepting paths of U and w[π]

the weight of an accepting path π. By definition of D, we

have the following properties for all γ ∈ R and any weighted

transducers Ui, i ∈ [1, m] and U:

m
∑

i=1

D(Ui) = D
(

m
∑

i=1

Ui

)

γD(U) = D(γU).

2.2 Rational kernels
A kernel between sequences K : Σ∗×Σ∗ → R is rational [7] if

there exists a weighted transducer U such that K coincides

with the function defined by U:

K(x,y) = U(x,y)

for all x,y ∈ Σ∗. When there exists a weighted transducerT

such that U can be decomposed as U = T◦T−1, then it was

shown by [7] that K is symmetric and PSD. The sequence

kernels commonly used in natural language processing and

computational biology are precisely PSD rational kernels of

this form.

A standard family of rational kernels is that of n-gram ker-

nels, see [19, 18] for instance. The n-gram kernel Kn of order

n is defined as

Kn(x,y) =
∑

|z|=n

cx(z)cy(z),

where cx(z) is the number of occurrences of z in x. Kn is

a PSD rational kernel since it corresponds to the weighted

transducer Tn ◦ T
−1
n where the transducer Tn is defined

such that Tn(x,z) = cx(z) for all x,z ∈ Σ∗ with |z| = n.

The transducer T2 for Σ = {a, b} is shown in Figure 2.

A key advantage of the rational kernel framework is that

it can be straightforwardly extended to kernels between two

sets of sequences, or distributions over sequences represented

by weighted automata. Let X and Y be two weighted au-

tomata, we can then define K(X,Y) as follow:

K(X,Y) =
∑

x,y∈Σ∗

X(x)×K(x,y)×Y(y)

=
∑

x,y∈Σ∗

X(x)×U(x,y)×Y(y)

= D(X ◦U ◦Y).

This extension is particularly important and relevant since

it helps define kernels between the lattices output by infor-

mation extraction, speech recognition, machine translation

systems, and other natural language processing tasks. Our

results for faster SVMs training with sequence kernels apply

similarly to large-scale training with kernels between lat-

tices.

3. COORDINATE DESCENT SOLUTION FOR
SVM OPTIMIZATION

We first briefly discuss the coordinate descent solution for

SVMs as in [14]. In the absence of the offset term b, where

a constant feature is used instead, the standard dual opti-

mization for SVMs for a sample of size m can be written as

the convex optimization problem:

min
α

F (α) =
1

2
α

⊤Qα− 1⊤
α

s.t. 0 ≤ α ≤ C,

where α ∈ R
m is the vector of dual variables and the PSD

matrix Q is defined in terms of the kernel matrix K: Qij =

yiyjKij , i, j ∈ [1, m], and the labels yi ∈ {−1,+1}.

A straightforward way to solve this convex problem is to use

a coordinate descent method and at each iteration update

just one coordinate αi. The optimal step size β⋆ correspond-

ing to the update of αi is obtained by solving

min
β

1

2
(α+ βei)

⊤Q(α+ βei)− 1⊤(α+ βei)

s.t. 0 ≤ α+ βei ≤ C,

where ei is an m-dimensional unit vector. Ignoring constant

terms, the optimization problem can be written as

min
β

1

2
β
2Qii + βe

⊤
i (Qα− 1)

s.t. 0 ≤ αi + β ≤ C.

IfQii = Φ(xi)
⊤Φ(xi) = 0, then Φ(xi) = 0 andQi = e

⊤
i Q =

0. Hence the objective function reduces to −β, and the

optimal step size is β⋆ = C − αi, resulting in the update:

αi ← 0. Otherwise Qii 6= 0 and the objective function is

a second-degree polynomial in β. Let β0 = −
Q⊤

i
α−1

Qii

, then

the optimal step size is given by

β
⋆ =











β0 if − αi ≤ β0 ≤ C,

−αi if β0 ≤ −αi,

C − αi otherwise.

The resulting update for αi is

αi ← min

(

max

(

αi −
Q⊤

i α− 1

Qii

, 0

)

, C

)

.



Algorithm 1 Coordinate descent solution for SVM

Train((xi)i∈[1,m])

1 α← 0

2 while α not optimal do

3 for i ∈ [1, m] do

4 g ← yix
⊤
i w − 1

5 α′
i ← min(max(αi −

g

Qii

, 0), C)

6 w ← w + (α′
i − αi)xi

7 αi ← α′
i

8 return w

When the matrix Q is too large to store in memory and

Qii 6= 0, the vector Qi must be computed at each update

of αi. If the cost of the computation of each entry Kij

is in O(N) where N is the dimension of the input space,

computing Qi is in the O(mN), and hence the cost of each

update is in O(mN).

The selection of the coordinate αi to update is based on the

gradient. The gradient of the objective function is ∇F (α) =

Qα− 1. It can be updated via

∇F (α)← ∇F (α) + ∆(αi)Qi.

The cost of this update is also in O(mN).

[14] observed that when the kernel is linear, Q⊤
i α can be

expressed in terms of w, the SVM weight vector solution,

w =
∑m

j=1 yjαjxj :

Q⊤
i α =

m
∑

j=1

yiyj(x
⊤
i xj)αj = yix

⊤
i w.

If the weight vector w is maintained throughout the iter-

ations, then the cost of an update is only in O(N) in this

case. The weight vector w can be updated via

w← w +∆(αi)yixi.

Maintaining the gradient ∇F (α) is however still costly. The

jth component of the gradient can be expresses as:

[∇F (α)]j = [Qα − 1]j

=

m
∑

i=1

yiyjx
⊤
i xjαi − 1 = w⊤(yjxj)− 1.

The update for the main term of component j of the gradient

is thus given by:

w⊤xj ← w⊤xj + (∆w)⊤xj .

Each of these updates can be done in O(N). The full update

for the gradient can hence be done in O(mN).

Several heuristics can be used to eliminate the cost of main-

taining the gradient. For instance, one can choose a random

αi to update at each iteration [14] or sequentially update

αis. [14] also showed that it is possible to use the chunking

method of [15] in conjunction with such heuristics.

Using the results from [20], [14] showed that the resulting

coordinate descent algorithm, Algorithm 1, converges to the

optimal solution with a convergence rate that is linear or

faster.

4. COORDINATE DESCENT SOLUTION FOR
RATIONAL KERNELS

This section shows that, remarkably, coordinate descent tech-

niques similar to those described in the previous section can

be used in the case of rational kernels.

For rational kernels, the input “vectors”xi are sequences, or

distributions over sequences, and the expression
∑m

j=1 yjαjxj

can be interpreted as a weighted regular expression. Let

Xi be a linear weighted automaton representing xi for all

i ∈ [1,m], and let W denote a weighted automaton repre-

senting w =
∑m

j=1 yjαjxj .

Let U be the weighted transducer associated to the ratio-

nal kernel K. Using the linearity of D and distributivity

properties just presented, we can now write:

Q⊤
i α =

m
∑

j=1

yiyjK(xi,xj)αj (1)

=

m
∑

j=1

yiyj D(Xi ◦U ◦Xj)αj

= D(yiXi ◦U ◦

m
∑

j=1

yjαjXj)

= D(yiXi ◦U ◦W).

Since U is a constant, in view of the complexity of com-

position, the expression yiXi ◦U ◦W can be computed in

time O(|Xi||W|). When yiXi ◦ U ◦W is acyclic, which

is the case for example if U admits no input ǫ-cycle, then

D(yiXi ◦ U ◦W) can be computed in linear time in the

size of yiXi ◦ U ◦W using a shortest-distance algorithm,

or forward-backward algorithm. For all of the rational ker-

nels that we are aware of, U admits no input ǫ-cycle and

this property holds. Thus, in that case, if we maintain a

weighted automaton W representing w, Q⊤
i α can be com-

puted in O(|Xi||W|). This complexity does not depend on

m and the explicit computation ofm kernel valuesK(xi,xj),

j∈ [1, m], is avoided.

The update rule for W consists of augmenting the weight of

sequence xi in the weighted automaton by ∆(αi)yi:

W←W +∆(αi)yiXi.

This update can be done very efficiently if W is determinis-

tic, in particular if it is represented as a deterministic trie.

When the weighted transducer U can be decomposed as

T ◦T−1, as for all sequence kernels seen in practice, we can

further improve the form of the updates. Let Π2(U) denote

the weighted automaton obtained form U by projection over
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Figure 3: The automata Φ′
i corresponding to the dataset of Table 1 when using a bigram kernel.

Algorithm 2 Coordinate descent solution for rational ker-

nels

Train((Φ′
i)i∈[1,m])

1 α← 0

2 while α not optimal do

3 for i ∈ [1, m] do

4 g ← D(Φ′
i ◦W

′)− 1

5 α′
i ← min(max(αi −

g

Qii

, 0), C)

6 W′ ←W′ + (α′
i − αi)Φ

′
i

7 αi ← α′
i

8 return W′

the output labels as described in Section 2. Then

Q⊤
i α = D(yiXi ◦T ◦T

−1 ◦W)

= D((yiXi ◦T) ◦ (W ◦T)−1)

= D(Π2(yiXi ◦T) ◦Π2(W ◦T))

= D(Φ′
i ◦W

′), (2)

where Φ′
i = Π2(yiXi ◦ T) and W′ = Π2(W ◦ T). Φ′

i,

i ∈ [1, m] can be precomputed and instead of W, we can

equivalently maintain W′, with the following simple update

rule:

W′ ←W′ +∆(αi)Φ
′
i. (3)

The gradient∇(F )(α) = Qα−1 can be expressed as follows

[∇(F )(α)]j = [Q⊤
α− 1]j = Q⊤

j α− 1 = D(Φ′
j ◦W

′)− 1.

The update rule for the main term D(Φ′
j◦W

′) can be written

as

D(Φ′
j ◦W

′)← D(Φ′
j ◦W

′) + D(Φ′
j ◦∆W′).

Maintaining each of these terms explicitly could be costly.

Using (2) to compute the gradient and (3) to update W′,

we can generalize Algorithm 1 and obtain Algorithm 2. It

follows from [20] that Algorithm 2 converges at least linearly

towards a global optimal solution. Moreover, the heuristics

used by [14] and mentioned in the previous section can also

be applied here to empirically improve the convergence rate

of the algorithm.

Table 2 shows the first iteration of Algorithm 2 on the dataset

given by Table 1 when using a bigram kernel.

Table 1: Example dataset, the given Φ′
i and Qii’s

assume the use of a bigram kernel.

i 1 2 3

xi ababa abbab abbab

yi +1 +1 −1

Φ′
i Fig. 3(a) Fig. 3(b) Fig. 3(c)

Qii 8 6 4

Table 2: First iteration of Algorithm 2 on the

dataset given Table 1. The last line gives the values

of α and W′ at the end of the iteration.

i α W′ Φ′
i ◦W

′ D(Φ′
i ◦W

′) α′
i

1 (0, 0, 0) Fig. 4(a) Fig. 5(a) 0 1
8

2 ( 1
8
, 0, 0) Fig. 4(b) Fig. 5(b) 3

4
1
24

3 ( 1
8
, 1
24
, 0) Fig. 4(c) Fig. 5(c) − 5

8
13
32

( 1
8
, 1
24
, 13
32
) Fig. 4(d)

5. IMPLEMENTATION AND ANALYSIS
We now proceed with the analysis of the complexity of each

iteration of Algorithm 2. Clearly, this complexity depends

on several implementation choices, but also on the kernel

used and on the structural properties of the problem consid-

ered. A key factor is the choice of the data structure used

to represent W′.

In order to simplify the analysis, we assume that the Φ′
is,

and thus W′, are acyclic. This assumption holds for all

rational kernels used in practice, however, it is not a re-

quirement for the correctness of Algorithm 2.

Given an acyclic weighted automaton A, we denote by l(A)

the maximal length of an accepting path in A and by n(A)

the number of accepting paths in A.

5.1 Naive representation of W′

A straightforward choice consists of following directly the

definition of W′:

W′ =
m
∑

i=1

αiΦ
′
i,
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Figure 4: Evolution of W′ through the first iteration of Algorithm 2 on the dataset from Table 1.

0,0

1,1a/2

2,2

b/2

3,4
b/1

3,5
a/1

0,0

1,1a/1

2,2

b/1

3,3
a/1

3,4/(1/4)
b/2

3,5/(1/4)
a/1

0,0

1,1a/-2

2,2

b/-1

3,4/(1/3)b/1

3,5/(7/24)
a/1

3,6

b/1

(a) (b) (c)

Figure 5: The automata Φ′
i ◦W

′ computed during the first iteration of Algorithm 2 on the dataset from Table

1.

and define W′ as a non-deterministic weighted automaton

with a single initial state andm outgoing ǫ-transitions, where

the weight of the ith transition is αi and its destination

state the initial state of Φ′
i. The size of this choice of W′ is

|W′| = m+
∑m

i=1 |Φ
′
i|.

The benefit of this representation is that the update of α

using (3) can be performed in constant time since it requires

modifying only the weight of one of the ǫ-transitions out of

the initial state. However, the complexity of computing the

gradient using (2) is in O(|Φ′
i||W

′|) = O(|Φ′
i|
∑m

i=1 |Φ
′
i|).

From an algorithmic point of view, using this naive represen-

tation of W′ is equivalent to using (1) with yiyjK(xi,xj) =

D(Φ′
i ◦Φ

′
j) to compute the gradient.

5.2 Representing W′ as a trie
Representing W′ as a deterministic weighted trie is another

approach that can lead to a simple update using (3). A

weighted trie is a rooted tree where each edge is labeled and

each node is weighted.

During composition, each accepting path in Φ′
i is matched

with a distinct node in W′. Thus, n(Φ′
i) paths of W′ are

explored during composition. Since the length of each of

these paths is at most l(Φ′
i), this leads to a complexity in

O(n(Φ′
i)l(Φ

′
i)) for computing Φ′

i ◦W
′ and thus for comput-

ing the gradient using (2).

Since each accepting path in Φ′
i corresponds to a distinct

node in W′, the weights of at most n(Φ′
i) nodes of W

′ need

to be updated. Thus, the complexity of an update of W′ is

then in O(n(Φ′
i)).

5.3 Representing W′ as a minimal automaton
The drawback of a trie representation of W′ is that it does

not provide all of the sparsity benefits of a fully automata-

based approach. A more space-efficient approach consists

of representing W′ as a minimal deterministic weighted au-

tomaton which can be substantially smaller, exponentially

smaller in some cases, than the corresponding trie.

The complexity of computing the gradient using (2) is then

inO(|Φ′
i◦W

′|) which is significantly less than theO(n(Φ′
i)l(Φ

′
i))

complexity of the trie representation. Performing the up-

date of W′ using (3) can be more costly though. With

the straightforward approach of using the general union,

weighted determinization and minimization algorithms [7],

the complexity depends on the size of W′. The cost of an

update can thus sometimes become large. However, it is

perhaps possible to design more efficient algorithms for aug-

menting a weighted automaton with a single string or even



Table 3: The time complexity of each gradient computation and of each update of W′ and the space

complexity required for representing W′ given for each type of representation of W′.

Representation of W′ Time complexity Space complexity

(gradient) (update) (for storing W′)

naive (W′
n) O(|Φ′

i|
∑m

i=1 |Φ
′
i|) O(1) O(m)

trie (W′
t) O(n(Φ′

i)l(Φ
′
i)) O(n(Φ′

i)) O(|W′
t|)

minimal automaton (W′
m) O(|Φ′

i ◦W
′
m|) open O(|W′

m|)

Table 4: Time (in minutes and seconds) for training

an SVM classifier using an SMO-like algorithm and

Algorithm 2 using a trie representation for W′.

Dataset Kernel SMO-like Alg. 2

Reuters 4-gram 2m 18s 25s

(subset) 5-gram 3m 56s 30s

6-gram 6m 16s 41s

7-gram 9m 24s 1m 01s

10-gram 25m 22s 1m 53s

gappy 3-gram 10m 40s 1m 23s

gappy 4-gram 58m 08s 7m 42s

Reuters 4-gram 618m 43s 16m 30s

(full) 5-gram > 2000m 23m 17s

6-gram > 2000m 31m 22s

7-gram > 2000m 37m 23s

a set of strings represented by a deterministic automaton,

while preserving determinism and minimality. The approach

just described forms a strong motivation for the study and

analysis of such non-trivial and probably sophisticated au-

tomata algorithms since it could lead to even more efficient

updates of W′ and overall speed-up of the SVMs training

with rational kernels. We leave the study of this open ques-

tion to the future. We note, however, that that analysis

could benefit from existing algorithms in the unweighted

case. Indeed, in the unweighted case, a number of efficient

algorithms have been designed for incrementally adding a

string to a minimal deterministic automaton while keeping

the result minimal and deterministic [9, 4], and the com-

plexity of each addition of a string using these algorithms is

only linear in the length of the string added.

Table 3 summarizes the time and space requirements for

each type of representation for W′. In the case of an n-gram

kernel of order k, l(Φ′
i) is a constant k, n(Φ′

i) is the number

of distinct k-grams occurring in xi, n(W
′
t) (= n(W′

m)) the

number of distinct k-grams occurring in the dataset, and

|W′
t| the number of distinct n-grams of order less or equal

to k in the dataset.

6. EXPERIMENTS
We used the Reuters-21578 dataset, a large data set conve-

nient for our analysis and commonly used in experimental

analyses of string kernels.1 We shall refer by full dataset to

the 12,902 news stories part of the ModeApte split.2 We

also considered a subset of that dataset consisting of 466

news stories. We experimented both with n-gram kernels

and gappy n-gram kernels with different n-gram orders. We

trained binary SVM classification for the acq class using the

following two algorithms: (a) the SMO-like algorithm of [11]

implemented using LIBSVM [5] and modified to handle the

on-demand computation of rational kernels; and (b) Algo-

rithm 2 implemented using a trie representation for W′. We

chose a dataset of moderate size in order to be able to run

the SMO-like algorithm. Table 4 reports the training time

observed,3 excluding the pre-processing step which consists

of computing Φ′
i for each data point and that is common to

both algorithms.

To estimate the benefits of representingW′ as a minimal au-

tomaton as described in Section 5.3, we applied the weighted

minimization algorithm to the tries output by Algorithm 2

(after shifting the weights to the non-negative domain) and

observed the resulting reduction in size. The results are re-

ported in Table 5. They show that representing W′ by a

minimal deterministic automaton can lead to very signifi-

cant savings in space and point out the substantial benefits

of the representation discussed in Section 5.3, and further

substantial reduction of the training time with respect to the

trie representation with an incremental addition of strings

to W′.

7. CONCLUSION
We presented novel techniques for large-scale training of

SVMs when used with sequence kernels. We gave a detailed

description of our algorithms and discussed different imple-

mentation choices, and presented an analysis of the result-

ing complexity. Our empirical results with large-scale data

sets demonstrate dramatic reductions of the training time.

We plan to make our software publicly available through an

open-source project. From the algorithmic point of view, it

is interesting to note that our training algorithm for SVMs

is entirely based on automata algorithms and requires no

specific solver.

1Available at: http://www.daviddlewis.com/resources/.
2Since we are not interested in classification accuracy, we
actually train on the training and test sets combined.
3Experiments were performed on dual-core 2.2 GHz AMD
Opteron workstation with 16GB of RAM.

http://www.daviddlewis.com/resources/


Table 5: Size of W′ (number of transitions) when

representing W′ as a deterministic weighted trie

and a minimal deterministic weighted automaton.

Dataset Kernel Number of transitions in W′

(trie) (minimal automaton)

Reuters 4-gram 66,331 34,785

(subset) 5-gram 154,460 63,643

6-gram 283,856 103,459

7-gram 452,881 157,390

10-gram 1,151,217 413,878

gappy 3-gram 103,353 66,650

gappy 4-gram 1,213,281 411,939

gappy 5-gram 6,423,447 1,403,744

Reuters 4-gram 242,570 106,640

(full) 5-gram 787,514 237,783

6-gram 1,852,634 441,242

7-gram 3,570,741 727,743
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