
Lightweight Feedback-Directed Cross-Module Optimization

Xinliang David Li, Raksit Ashok, Robert Hundt
Google

1600 Amphitheatre Parkway
Mountain View, CA, 94043

{davidxl, raksit, rhundt}@google.com

Abstract
Cross-module inter-procedural compiler optimization (IPO) and
Feedback-Directed Optimization (FDO) are two important com-
piler techniques delivering solid performance gains. The combi-
nation of IPO and FDO delivers peak performance, but also multi-
plies both techniques’ usability problems. In this paper, we present
LIPO, a novel static IPO framework, which integrates IPO and
FDO. Compared to existing approaches, LIPO no longer requires
writing of the compiler’s intermediate representation, eliminates
the link-time inter-procedural optimization phase entirely, and min-
imizes code re-generation overhead, thus improving scalability by
an order of magnitude. Compared to an FDO baseline, and without
further specific tuning, LIPO improves performance of SPEC2006
INT by 2.5%, and of SPEC2000 INT by 4.4%, with up to 23% for
one benchmarks. We confirm our scalability results on a set of large
industrial applications, demonstrating 2.9% performance improve-
ments on average. Compile time overhead for full builds is less than
30%, incremental builds take a few seconds on average, and stor-
age requirements increase by only 24%, all compared to the FDO
baseline.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; D.3.4 [Processors]: Optimization

General Terms Performance

Keywords Inter-procedural, Feedback-directed, Cross-module,
Optimization

1. Introduction
A static compiler’s ability to optimize code is limited by the scope
of code it can see. Typically, compilers translate one source file at
a time, operating at function granularity. Most compilers, often at
higher optimization levels, start to gradually enable intra-module
inter-procedural optimizations. For languages supporting indepen-
dent compilation of separate source files, such as C, C++, or For-
tran, source boundaries become an optimization blocker.

For example, consider the artificial code in Figure 1 with two
source files a.c and b.c. While compiling a.c, the compiler has
no knowledge of the body of function bar() and will have to emit
two standard calling sequences to bar(), passing two parameters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’10, April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

a.c:
int foo(int i, int j) {

return bar(i,j) + bar(j,i);
}

b.c:
int bar(int i, int j) {

return i-j;
}

Figure 1. Simple example to illustrate benefits of IPO

to each. If bar() had been inlined into foo(), across the module
boundary, the body of foo() could have been reduced to a simple
return 0 statement.

Over the years, a large array of inter-procedural (IP) optimiza-
tions has been developed. The typical techniques are inlining and
cloning, indirect function call promotion, constant propagation,
alias, mod/ref, and points-to analysis, register allocation, register
pressure estimation, global variable optimizations, code and data
layout techniques, profile propagation techniques, C++ class hi-
erarchy analysis and de-virtualization, dead variable and function
elimination, and many more.

To study the effectiveness of some of these transformations, we
used the open64 [19] compiler, release 4.1 (SVN revision r1442),
and compiled SPEC2000 INT in a set of experiments. All exper-
iments were run on an Intel Pentium 4, 3.4 GHz, with 4GB of
memory. In each experiment, we disabled one inter-procedural op-
timization pass and measured the expected performance degrada-
tions. Since there are interactions between the various passes’ per-
formance contributions, this study can only give an approximation.

Our baseline is compiled at -O2 with IPO and feedback directed
optimization (FDO). We evaluated the eight inter-procedural passes
inlining, indirect call promotion, alias analysis, copy propagation,
as well as function reordering, class hierarchy analysis, dead code
analysis, and dead function elimination. Early inlining (at the sin-
gle module level) remained enabled for all experiments. Only the
first four inter-procedural optimizations showed measurable perfor-
mance impact on these benchmarks, summarized in Figure 2. Cor-
respondingly, we omit the results for the other four optimizations.

We find that two of the more important IPO passes are inlining,
as turning it off results in a 17% performance degradation over-
all, with 252.eon degrading by 70%, as well as indirect function
call promotion (3% degradation overall when turned off). Corre-
spondingly, we focused on these two in our initial implementation
of LIPO. All performance numbers presented later result from im-
proved performance enabled by these two passes.

Inlining improves performance by eliminating procedure call
overhead, adding context sensitivity, and creating larger optimiza-

Figure 2. Effects of turning off individual IPO optimizations and
analysis passes. Shown are relative regressions against normalized
performance, 1.0 means no loss.

tion and scheduling regions. Added context sensitivity can improve
alias and points-to information and enables more constant propa-
gation, redundancy elimination, dead code and unreachable code
elimination. It can also serve as an enabler for other major phases,
such as the loop optimizer.

Indirect call promotion is an enabler for inlining. It replaces
an indirect, hot call having a limited set of target addresses, with
a cascade of tests guarding direct calls to those targets, plus a
fall through branch containing the original indirect branch. The
introduction of these direct calls enables further inlining (see also
[1]).

1.1 Feedback Directed Optimization (FDO)
In this section we briefly describe feedback directed optimization
(FDO) and study its impact on IPO. FDO imposes a dual build
model. In a first instrumentation build the compiler inserts code
into the binary, typically to count edges or to collect value profiles.
The instrumented binary is run on a representative set of training
input in a training phase. At the end of this execution, all collected
edge counts and value information are written and aggregated in a
profile database. In a second optimization build, the compiler uses
the generated profile to make better optimization decisions. Many
compiler phases can benefit from more exact information then
estimated heuristics, e.g., the inliner and indirect call promotion,
where knowing the exact distribution of targets is essential, the loop
optimizer, where distinguishing loops with low or high trip count
can be beneficial, and many other optimizations, at both high and
low level.

IP optimizations strongly benefit from FDO. To illustrate the ef-
fects, we used the same open64 compiler to benchmark SPEC2000
INT and compared the baseline to builds using IPO and FDO turned
on, individually and combined. In these experiments, plain FDO
actually decreased performance slightly, indicating that our open64
version was not tuned well towards this set of benchmarks. We be-
lieve this only strengthens our argument, as less of the typical SPEC
specific optimizations were perturbing the results. Our claim that
IPO needs FDO is supported by the winning 12% performance (p)
increase in Table 1, which almost doubles the effects of plain IPO
alone.

1.2 Existing IPO Frameworks
In Section 2 we discuss some of the existing inter-procedural com-
pilation frameworks in more detail, in particular HLO [2, 3], the
old high-level optimizer from HP, its successor SYZYGY [16],

Experiment SPEC score Improvement
-O2 12.69
-O2 -FDO 12.60 -1%
-O2 -IPO 13.46 6%
-O2 -FDO -IPO 14.27 12%

Table 1. p(FDO + IPO) > p(FDO) + p(IPO)

Figure 3. Traditional IPO model

the open source frameworks open64, gcc’s -combine feature, gcc’s
LTO framework, and LLVM. We find that all existing infrastruc-
tures represent a variation of a standard IPO model, as presented
in [16]. This model distinguishes three major phases, a front-end
phase, an IPO phase, and a back-end phase.

In the parallelizable front-end phase, the compiler performs a
reasonable amount of optimizations for code cleanup and canoni-
calization. It may also compute summary information for consump-
tion by IPO. This phase writes the compiler intermediate represen-
tation (IR) to disk as fake ELF object files, which allows seamless
integration into existing build systems.

The IPO phase is typically executed at link time. IPO reads
in the fake object files, or parts of them, e.g., sections containing
summary data. It may perform type unification and build an inter-
procedural symbol table, perform analysis, either on summaries,
IR, or combined IR, make transformation decisions or perform
actual transformations, and readies output for consumption by the
back-end phase.

The parallelizable back-end phase accepts the compiler IR from
IPO, either directly out of memory or via intermediate fake object
files, and performs a stronger set of scalar, loop, and other opti-
mizations, as well as code generation and object file production.
These final object files are then fed back to the linker to produce
the final binary.

All these tasks are points of distinction between the various
frameworks. What all these frameworks have in common is that
they write the compiler IR to disk, putting pressure on disk and
network bandwidth. Because the compiler IR usually contains more
information than a simple object file, e.g., full type information, IR
files are typically larger than regular object files by factors ranging
on average from 4x to 10x, with potential for pathological cases.

At IPO start, the IR files have to be read/mapped in, which
can consume a significant amount of time, e.g., in the range of
minutes, and even hours for large applications. While the front-
end and back-end phase can be parallelized, IPO typically cannot,
or only to a limited extent, representing a bottleneck with runtimes
ranging again from minutes to hours.

Since the effects and dependencies of source changes aren’t
modeled, even insignificant code changes lead to full invocations
of IPO and the complete back-end phase, which can also take very
long for large applications. Overall, this design allows effective
cross-module inter-procedural optimizations at the cost of very
long overall compile/link cycles. We provide detailed examples for
compile and link times for existing infrastructures in Section 2

Debugging of the IPA infrastructure is cumbersome, because of
the many intermediate steps and the many files involved, as well
as the high runtime of IPO itself. Maintaining debug information
can be complicated for some compilers, depending on how they
maintain or generate debug information (e.g., via callbacks into
the compiler front-end). Combining FDO and IPO multiplies the
usability problems, as now two IPO builds have to be performed, at
least for compilers that expect identical control flow graphs during
the FDO instrumentation and profile annotation phase.

1.3 Contribution
In this paper, we make the following contributions:

• We present our novel IPO framework, which seamlessly inte-
grates IPO with FDO.

• We evaluate the infrastructures properties of our approach us-
ing the SPEC benchmark suite. We show that our approach per-
forms an order of magnitude better than existing approaches in
terms of compile time and storage requirements. Furthermore,
our approach is amenable to distributed build systems.

• We demonstrate the immediate performance benefits from im-
proved inlining and indirect call promotion, the only two opti-
mizations we focused on in this paper.

• We confirm our results on a set of very large industrial applica-
tions, and provide further analysis results.

The rest of this paper is organized as follows. We first ask the
reader for patience as we detail key design decisions of several
existing IPO frameworks. These descriptions allow drawing a sharp
contrast to our work, which we describe in Section 3. Readers
familiar with existing frameworks can safely skip Section 2 and
proceed directly to Section 3. We provide a thorough experimental
evaluation in Section 4, before we conclude.

In this paper we always include cross-module optimizations
when referring to IPO, unless noted otherwise. We use the term
inter-procedural analysis (IPA) in cases where we refer to inter-
procedural analysis only. While we used open64 for illustration
above, all subsequent results reference our implementation based
on gcc 4.4. All performance effects come from improved inlining
and indirect call promotion only.

2. Related Work
Early work in inter-procedural optimization was done by Hall [13].
This work focused mainly on core IPO algorithms, such as call
graph construction and inlining. Early studies of inlining have been
done in [6, 9, 10] , and more recently in [5]. It became clear early
on that even minor code changes would make a full IPO and back-
end phase necessary. [8] tried to solve this problem by maintaining
proper or approximated dependencies. While this certainly is a
path to reducing the compile time of IPO, to our knowledge no
commercially successful system has been deployed using such
techniques. There have also been approaches to do IPO at link time
on regular object files or fully built executables. A good example of
such an approach is [18]. To a certain extent, dynamic optimizers
could be considered inter-procedural optimizers, as they see the
whole program at execution time. However, this field is far removed
from the topic of this paper and we won’t discuss it further here.

The earliest reference to feedback directed optimization was
made by no other than Knuth [14], Ball and Larus had a seminal
paper on optimal profile code insertion [4]. FDO is available in
most modern compilers, with the notable exception of LLVM. A
detailed description and evaluation of techniques to eliminate C++
virtual calls can be found in [1], class hierarchy analysis has been
studied in [11].

We believe the most relevant and directly comparable pieces
of work are the fully developed and deployed commercial and
open source frameworks. In the next few sections, we detail key
design choices made by HLO, an older inter-procedural optimizer
from HP, its successor SYZYGY, the open source frameworks
open64, gcc’s -combine feature, gcc’s LTO framework, and LLVM.
We won’t discuss other commercial compilers, e.g., from Intel,
or Microsoft, but are confident that many of them implement a
variation of the described general IPO model.

The HP High-Level Optimizer (HLO) [2, 3] maps in all input
files at link time, and offers a compiler controlled swapping mech-
anism in order to scale to large applications, hoping that domain
knowledge would beat the standard virtual memory management
system. Code generation is an integral part of HLO, not paral-
lelized, and a bottleneck in terms of compile time. On average, to
compile SPEC2000 INT, HLO imposed a 2.5x overhead in com-
pile time on full rebuilds, with up to 6x for larger benchmarks. For
incremental builds, the compile time overhead factor is orders of
magnitudes higher, as full IPO and backend phase have to be exe-
cuted. HLO did not scale to the larger SPEC2006 INT benchmarks.

SYZYGY [16] is the successor of HLO and significantly im-
proves compile time and scalability. It has a two-part IPO model.
The first half operates on summaries only and makes most opti-
mization decisions. During this time, no more than two IR files are
opened at any given time. The second half of IPO consists of the
inliner, which operates on summaries first to compute inlining deci-
sions, before using actual compiler IR to make the transformations.
In order to scale to very large applications, even with a constricted
memory space, it maintains a pool of no more than a few dozen
open IR files and algorithms were developed to minimize the file
open and closing times [5]. At the end of IPO, final transformation
decisions are written back to temporary IR files, and the back-end
phase is parallelized over these files.

On average, to compile SPEC2000 INT, SYZYGY imposes a
2.3x overhead for full rebuilds at (backend) parallelism level 1, but
only a 1.2x overhead at parallelism level 4. Again, for incremental
builds, the compile time overhead factor is orders of magnitudes
higher. The IR file to object file ratio was about 5x. Compiling a
large shared library of a commercial database application, consist-
ing of several thousand C input files, took around 4 hours for full
builds, and 2 hours for incremental builds. The file overhead led
to exceeding of the file size limit on the system, and build system
changes were necessary to break this large library apart.

Open64’s IPO maps in all IR files at link time. Its IPA phase
runs comparatively fast, seeking to operate on summary data only.
It writes back intermediate object files, and the back-end phase is
parallelized over these files, similar to SYZYGY. One interesting
design decision has been made for the inter-procedural symbol
and type tables. Open64 produces a single intermediate object file
containing all statically promoted and global variables, as well as
the IP symbol and type table. In the parallelized backend phase, this
file is compiled first, before all other intermediate files are compiled
in parallel. All of these compilations pass a temporary IR file plus
the symbol table file to the compiler. For large applications, the
symbol table file can become many hundred MB in size, and as a
result this design can significantly slow down compile time.

We used open64 (SVN revision 1442) to compile the C++
“Search” application presented in table 6 on a 4-core AMD Opteron

machine, running at 2.2GHz, with 32GB of memory. Reading in
and mapping of all input files required 6.5GB and took 59 minutes.
Building other inter-procedural data structures required another
6.4GB of memory. The symbol table intermediate file ended up at
384 MB and took 53 minutes to compile. The resulting assembly
file had 23 mio lines. The rest of the backend and code generation
took many hours to complete, compiling an average of 5 files per
minute per core (running 5 processes in parallel).

The recently started gcc LTO effort writes fat object files to disk
in the front-end phase, containing both compiler IR and regular
object file sections. This allows LTO to use the same object files
for regular builds or IPO builds. LTO has a very narrow IPO
phase, which works on summaries only and makes mostly grouping
decisions, before parallelizing the back-end over these groups. The
back-end is an extended gcc compiler, which accepts multiple IR
files as a combined input and performs existing inter-procedural
transformations. This is somewhat similar to the -combine support
described below. At time of this writing, no scalability results were
available.

LLVM [15] also has a traditional link time optimizer. It keeps
the full compiler IR in core, alongside analysis data structures, such
as use-def chains. Because of this design, the LLVM IR has been
specifically optimized for memory footprint. In practice, LLVM
is capable of optimizing mid-size programs (500K - 1M LOC)
on desktop workstations. For example, compiling 176.gcc requires
roughly 40MB of memory to hold in core. LLVM also performs
code generation sequentially in core and produces one large as-
sembly file. While efforts are underway to parallelize LLVM, in
particular code generation, its current architecture is not capable of
distributing to more than one machine [7].

The gcc C front-end supports the -combine option, allowing to
combine sources into one compilation process in an all-in-memory
model. This model differs from the general IPA approach, as users
must manually partition the source files into sets, a labor intensive
process which is unrobust against program evolution and obtrusive
to the build system. The implementation is unloved by the gcc com-
munity because of its lack of robustness, falsely reported errors, and
restriction to C.

3. Lightweight IPO
In this section we detail the design of our novel lightweight inter-
procedural optimizer LIPO. The key design decisions can be sum-
marized the following way:

• We seamlessly integrate IPO and FDO.
• We move the IPA analysis phase into the binary and execute it

at the end of the FDO training run.
• We add aggregated IPA analysis results to the FDO profiles.
• During the FDO optimization build, we use these results to read

in additional source modules and form larger pseudo modules to
extend scope and to enable more intra-module inter-procedural
optimizations.

We now discuss this design in detail with focus on the two key
IP optimizations inlining and indirect call promotion.

Since IPO needs FDO to maximize its performance potential,
integrating these two techniques becomes a logical design choice.
Existing FDO users can get IPO almost for free by adding an
option.

LIPO no longer needs an explicit inter-procedural optimizer to
be executed at link time. Instead, the IPA analysis phase now runs
at the end of the FDO training run, with negligible performance
overhead. At this point, the analysis phase can see the complete
results of the binaries’ execution, in particular, all profile counters,

debug and source information, as well as summary information,
which may have been stored in the binary.

From this information, LIPO constructs a full dynamic call
graph and performs a greedy clustering algorithm to determine ben-
eficial groupings for inlining and indirect call promotion. The clus-
tering information, and further analysis results, are stored alongside
regular FDO counters in augmented FDO profiles. To use the initial
example in Figure 1, since foo() contains hot calls to bar(), the
files a.c and b.c would end up in the same cluster to enable cross
module inlining later.

During the FDO optimization build, the compiler continues to
compile one file at a time and reads in the augmented profiles. If a
cluster has been formed in the step above, auxiliary source modules
were specified in the profiles and are now read in and added to
the compilation scope of the first, main module. This step sounds
simpler than it actually is. This process can be conceptually thought
of as combining multiple source files into one big one. Just as when
doing this manually, problems with multiple definitions, identically
named static variables, and type mismatches must be resolved by
the compiler. To avoid redundant computation later, the compiler
needs to keep track of what was specified in the main module.

Now the compiler has a greatly extended scope and intra-
module inter-procedural optimizations can be performed. In our
initial implementation we focused on the existing optimization
passes inlining and indirect call promotion. Both passes had to be
augmented to be able to handle functions from out of (original)
scope.

After all transformations have been performed, unnecessary
auxiliary functions are deleted to avoid redundant time spent in
further optimization and code generation passes. Referencing the
example in Figure 1 again, while compiling a.c, the compiler will
read the auxiliary module b.c. After bar() has been inlined into
foo(), the compiler can safely delete bar() from its current scope
and not pass it on to later compilation phases. If it is referenced
somewhere else, the body of bar() will still become available
when module b.c is being compiled and linked in later.

The implementation of LIPO consists of three major blocks.
Support for LIPO in the language frontend, where parsing of mul-
tiple modules must be supported, a runtime component, and com-
piler extensions to support optimizations. We will discuss details of
these in the next sections.

3.1 Language Front-End Support
The main task for the language front-end is to support parsing of
multiple source modules. This requires more than concatenating all
source modules together, e.g., via include directives, and parsing
the combined file. For languages like C++ the name lookup rules
are very complicated and simply combining all sources and treating
them as one extended translation unit won’t work. For simpler
languages such as C, gcc offers support with its -combine option,
yet, even though this option has been implemented years ago, it is
fragile, unrobust, and generally unused.

Our solution is to parse each module in isolation, i.e., we added
support in the front-end to allow independent parsing of source
modules. For gcc, this required clearing of the name bindings
for global entities after parsing of each module. We shifted type
unification and symbol resolution to the backend, which greatly
simplified the required implementation overhead in the front-ends.
Compilers with separated front- and back-end, e.g., open64, will
pass compiler IR around and LIPO can be added easily as a simple
extension.

3.2 LIPO Runtime
At the end of the program execution in the FDO training phase,
before profiles are written, the IPA analysis takes place. For inlining

we build the dynamic call graph. For indirect calls, we use the
existing FDO value profiling to obtain the branch targets. For direct
calls we don’t rely on the existing edge profiles, but add new
instrumentation for direct call profiling. The resulting counters
are for consumption by LIPO only. This design sacrifices training
phase execution speed in favor of smaller profile sizes, a decision
we may revisit in the future.

Source module affinity analysis is now performed on this dy-
namic call graph. To obtain best module groupings, e.g., for inlin-
ing, it would be appropriate to model the inlining heuristics in the
clustering algorithm. We, instead, use the simple greedy algorithm
outlined in Figure 4. The computed module groups are written into
the augmented profiles.

There is an interesting observation in regards to summaries. In
traditional IPA, summary information is typically written to the IR
object files in some encoding, and the link-time IPO has to read,
decode and store this information in its internal data structures.
Since LIPO runs at program runtime, summary information can be
stored as program data and be used directly by LIPO, without the
need for further decoding.

3.3 Optimization Extensions
There are several LIPO specific tasks in the compiler middle-
end and back-end to enable cross module optimizations, to ensure
correct code generation, and to reach a successful final program
link.

3.3.1 In-core Linking
An in-core linking phase merges global functions, variables, and
types across modules. Undefined symbols are resolved to their def-
inition, if one exists in a module group. If function references can
be resolved before the call graph is built, the implementation may
chose to directly resolve calls in the intermediate representation.

As for the traditional link time IPO, type merging is also needed
for LIPO. In this process, types from different modules are merged
into a global type equivalence table, which is used by the compiler
middle-end and back-end for tasks like type based aliasing queries,
or useless type cast removal.

3.3.2 Handling Functions with Special Linkage
Functions defined in auxiliary modules have special linkage. Most
of the functions are treated as inline functions, they are not not
needed for code expansion and can be deleted after the final inline
phase. COMDAT functions need to be expanded if they are still
reachable after inlining. There may be multiple copies of a COM-
DAT function in a LIPO compilation. The compiler will pick one
instance and discard the rest, similar to what the linker would have
done in a regular link. Compiler-created functions, e.g., function
clones after constant propagation, can never be ’external’. They can
be deleted only if there is no remaining reference after inlining.

3.3.3 Static Promotion and Global Externalization
A static entity has internal linkage and a name that is either file- or
function-scoped. Static variables and static functions need special
handling in both main and auxiliary modules. Global variables need
special handling in auxiliary modules as well. We distinguish these
cases:

• For any module that is imported as an auxiliary module, static
variables and functions defined in it need to be promoted to
globals, both when the module is compiled as the main mod-
ule and as an auxiliary module. The problem is that a unique,
non-conflicting linker id for the static entities must be created
that both caller and callee module can agree upon. Our solu-
tion is to postfix the original, mangled names with the keyword

“lipo/cmo” and the main module’s linker id. It is possible for
multiple static variables in different scopes to share the same
name. We therefore add sequence numbers to the names, fol-
lowing the variables’ declaration order.

• When a module is never imported, no promotion needs to hap-
pen when that module is compiled as the primary module.

• Static functions in auxiliary modules are externalized, same as
variables, but their function bodies are kept for the purpose of
inlining. The naming convention is similar to the one for static
variables described above.

• Global variables in auxiliary modules should be treated as, and
converted to, extern.

3.4 Build System Integration
In this section we discuss integrating LIPO into build systems.
We distinguish the three cases of a local fresh build, a local, but
incremental build, and a distributed build.

For fresh builds on a local system, LIPO works without prob-
lems and, e.g., Makefile-based systems do not have to change. All
sources are available, LIPO will find all auxiliary modules, and the
dependence checking at the main module level (as opposed to in-
cluding the auxiliary modules) is sufficient.

For incremental builds, the situation is slightly different. If a
main module is part of a group and auxiliary modules are brought
in during compilation, a modification of an auxiliary module makes
a recompilation of the main module necessary. In order to maintain
these dependencies, we developed a small tool that reads module
profile information and dumps the full list of auxiliary dependen-
cies. A common paradigm in Makefile based systems is to generate
source dependencies. This tool can be added to this process. De-
pendencies should be refreshed whenever the FDO profiles are be-
ing regenerated, as modified profiles can lead to modified grouping
decisions.

Integrating LIPO into a distributed build system, e.g., distcc
[12], poses a similar problem. For such systems, the main module
and all auxiliary files, headers, and profiles, need to be distributed
across build machines. We can use the same tool introduced before
and only minor modifications to these build systems are necessary
to allow distributed LIPO builds.

4. Experimental Evaluation
In this section we analyze various aspects of our infrastructure,
such as module grouping properties, IPA analysis overhead, com-
pile time and file size overheads, as well as runtime performance.
Most experiments were run on SPEC 2006 INT, using a cutoff ratio
of 95% in our greedy clustering algorithm. We also present perfor-
mance numbers for SPEC2000 INT, as well as interesting analysis
results for a set of large industrial applications. For all these sets of
benchmarks, we only compiled the C/C++ benchmarks, and only
formed non-mixed language module groups. All experiments were
run on an 8-core Intel Core-2 Duo, running at 2.33 GHz, with 32
GB of memory.

4.1 Module Groups
We analyze how the cutoff threshold in the greedy algorithm influ-
ences the module grouping. We compile all of SPEC2006 INT with
cutoff thresholds of 80%, 90%, and 95%. The results are summa-
rized in Table 2. For each experiment, we compute the total number
of auxiliary modules used (column Aux), the number of trivial mod-
ule groups, which are groups with only 1 module (column Trv), the
maximum size of a module group for a benchmark (column Mx),
and the average size of module groups (column Avg). To put these

1. Compute the sum total of all dynamic call edge counts.
2. Create an array of sorted edges in descending order of their call counts.
3. Find the cutoff call count:

(a) Iterate through the sorted edge array and add up the call counts.
(b) If the current total count reaches 95% of the count computed at step 1, stop. The cutoff edge

count is the count of the current edge. A edge is considered hot if its count is greater than the
cutoff count.

4. Start module grouping: For each call graph node, find all nodes that are reachable from it in a
reduced call graph, which contains only hot edges. Add the defining modules of the reachable nodes
to the module group of the node being processed.

Figure 4. Greedy clustering algorithm for module group formation.

numbers into context, we also provide the total number of modules
for each benchmark (column Mods).

The experiments show that the average size of module groups
is small, averaging (geometric mean) 1.3 for a cutoff of 80%, 1.5
for 90%, and 1.6 for 95%. The notable exception is the benchmark
403.gcc, which has oversized module groups because of remark-
ably flat profiles. Clearly, the graph partitioning algorithm has to
improve in order to handle such cases properly. Another interesting
benchmark is 473.astar, which only forms trivial program groups.
Discounting 403.gcc, the largest module group consists of 11 files
(in 483.xalancbmk at 95%).

4.2 IPA Analysis Overhead
LIPO’s runtime overhead on the training phase consists of two
components, the overhead from additional instrumentation to count
direct calls, and the overhead from running the IPA analysis at
the end of execution. The instrumentation runtime overhead is
shown in Table 3, it amounts to 32.5% on average, with one case
increasing by 2.6x. This overhead is a result of our design decision
to not rely on basic block counts for direct call profiling, but to add
more instrumentation instead.

We determine the IPA analysis overhead by measuring the dif-
ference in execution time of the instrumented binary, with and with-
out the IPA analysis. This overhead is generally minimal. We show
the runtimes without IPA in the No IPA column and overheads
(comparing LIPO against NoIPA) larger than 1% in the following
Ov. column.

4.3 Compile Time Overhead
We measured the overhead for full and incremental builds for
SPEC2006 INT. For full rebuilds, we compare in Table 4 a regular
build at -O2, a regular full FDO optimization build, and a full
LIPO build. Since with FDO and LIPO there is generally more
aggressive inlining, we would expect the FDO times to be higher
than the -O2 times. The average group size at 95% cutoff was 1.6,
which would lead us to expect a 60% compile overhead over FDO.
However, we see a lower overhead of only 28%, as we are removing
unnecessary code before it enters further optimization and code
generation passes. Assuming unlimited parallelism in a distributed
build infrastructure, a lower bound for full build times on such
systems is the longest time it takes to compile any given module
group. Since module groups are generally small, distributed build
times can be a fraction of undistributed build times.

To measure the overhead for incremental builds, we run N ex-
periments for each benchmarks, where N is the number of C/C++
files in this benchmark. In each experiment, we touch one source
module, find all other groups containing this source file, and ad-
ditionally touch each of these groups’ main module, modeling the

full dependencies in a build system. We then compute maximum
and average rebuild overhead at parallelism levels 1 and 2 (indi-
cated by letter ’j’). The results are also in Table 4.

The incremental build times are on average surprisingly low,
less than 2 seconds on average, less than 20 seconds on average for
the worst cases for sequential rebuilds, and less than 12 seconds on
average for the worst cases at parallelism level 2. This number con-
tinues to decline at higher levels of build parallelism. The expected
outlier is again 403.gcc, where too many large module groups were
formed.

The columns imax and iavg further analyze the inclusion pat-
terns and show to what extent modules are part of other mod-
ule groups. We show maximum and average numbers, which help
explain the incremental compile time overhead. For example, for
403.gcc, modifying a particular (unfortunate) file may cause 33
other files to be recompiled, roughly 22% of this benchmark’s over-
all modules. We want to emphasize that even this pathological case
is still significantly better than previous approaches, as outlined in
Section 2, where all modules have to be rebuilt after IPO, even after
insignificant code changes.

4.4 File Size Overhead
We analyze the changes in object file sizes and profile sizes for
LIPO compared to a standard FDO build. In Table 5 we list these
values for the SPEC2006 INT benchmarks. Column objects lists
the sizes of the object files produced by the FDO-optimize build.
The gcc compiler stores profile information in gcda files, and corre-
spondingly, the column profiles lists the profile sizes. The following
column shows the relation of these two in percent. The same data is
shown for the LIPO object files, LIPO profiles, and the correspond-
ing percentages.

Profiles add up to about 18% of the object file sizes for FDO.
The file sizes for the LIPO objects increase by about 8% due
to more aggressive inlining. The relative profile sizes for LIPO
amount to 36% of the LIPO object files, as IPA information has
been added to them. The LIPO profiles are about 2.1x larger than
the FDO profiles. In total, LIPO imposes a total increase in file sizes
of only 25% over the FDO baseline.

4.5 Performance
We analyze how the grouping cutoff threshold affects performance.
In this paper we didn’t add any novel optimizations, all gains
come from more aggressive inlining and additional indirect call
promotion.

For the cutoff values of 80%, 90%, and 95%, on the C/C++
SPEC2006 INT programs, we show the improvements of LIPO
over the FDO baseline in Figure 5. For this particular comparison,

Clustering Cutoff: 80% 90% 95%
Benchmark Mods Aux Trv Mx Avg Aux Trv Mx Avg Aux Trv Mx Avg

400.perlbench 50 18 41 5 1.4 28 38 5 1.6 38 34 6 1.7
401.bzip2 7 3 4 2 1.4 4 4 3 1.6 4 4 3 1.4

403.gcc 143 216 82 13 2.5 365 65 18 3.6 524 54 26 4.4
429.mcf 11 1 10 2 1.1 3 9 3 1.3 3 9 3 1.3

445.gobmk 62 11 54 4 1.2 16 50 4 1.3 21 47 5 1.3
456.hmmer 56 1 55 2 1.0 1 55 2 1.0 1 55 2 1.0

458.sjeng 19 12 14 9 1.6 12 14 9 1.6 12 14 9 1.6
462.libquantum 16 1 15 2 1.1 1 15 2 1.1 1 15 2 1.1

464.h264ref 42 1 41 2 1.0 3 39 2 1.1 5 37 2 1.1
471.omnetpp 83 48 66 7 1.6 63 62 8 1.8 73 60 10 1.9

473.astar 11 0 11 1 1.0 0 11 1 1.0 0 11 1 1.0
483.xalancbmk 693 97 660 9 1.1 133 657 11 1.2 147 654 11 1.2

Geo Mean 1.3 1.5 1.6

Table 2. Module grouping information for SPEC2006 at 80%, 90%, and 95%

Benchmark FDO LIPO Ov. NoIPA Ov.
400.perlbench 41.5 66.5 60.3% 64.3 3.4%

401.bzip2 70.3 75.1 6.8% 74.8 < 1%
403.gcc 2.0 2.6 29.2% 2.6 < 1%
429.mcf 41.5 40.4 -2.7% 40.5 < 1%

445.gobmk 173.9 208.0 19.6% 207.2 < 1%
456.hmmer 106.5 106.9 0.4% 107.5 < 1%

458.sjeng 236.3 290.3 22.9% 290.9 < 1%
462.libquantum 2.8 2.9 5.4% 2.9 < 1%

464.h264ref 148.5 241.1 62.3% 241.0 < 1%

471.omnetpp 110.8 209.6 91.3% 208.3 < 1%
473.astar 150.1 161.9 7.9% 160.7 < 1%

483.xalancbmk 175.8 456.8 159.8% 447.4 2.1%
GeoMean 32.5%

Table 3. Training phase runtimes, in [sec], and overhead from
additional instrumentation, and IPA.

we also add the performance numbers generated with a cutoff of
99%. All experiments were compiled with -O2.

We see several degradations at a cutoff threshold of 99% over
95%. Clearly, the compiler can benefit from better tuning for larger
compilation scopes. For now, we picked a default threshold of 95%
in our implementation. As other IP optimization heuristics improve,
this value will be subject of further tuning. The threshold of 95%
also results in good performance results on SPEC2000 INT, shown
in Figure 6, which yields an overall performance improvement of
about 4.4%..

4.6 Large Applications
We verified – and confirmed – the presented results on a set of
larger, industrial C++ applications running in Google’s datacen-
ters. In Table 6 we present the performance numbers for seven large
and two smaller benchmarks. Average performance on these bench-
marks improves by 2.9% (over the FDO baseline). In this table we
also show the module grouping information, similar to Table 2.

The average module groups sizes are, again, surprisingly small
at 1.24. To find out why we show the total number of dynamic
call graph edges, their sum total edge counts, and the number and
percentage of hot call edges, as filtered out by our greedy algorithm
(Table 4). We find that on average only about 5% of all edges are
hot (3.6% if we discard the smaller Video Converter benchmark).

Figure 5. Performance improvements in [%] over FDO, for
SPEC2006 INT, at cutoff thresholds of 80% (2.0%), 90% (2.4%),
95% (2.7%), and 99% (2.4%)

Figure 6. Performance improvements in [%] over FDO, for
SPEC2000 INT

Full Builds, j1 Incremental Builds
Benchmark -O2 FDO LIPO Overhead j1 max j1 avg j2 max j2 avg imax iavg

400.perlbench 42.3 43.9 56.7 29.0% 29.3 3.1 16.3 2.1 12 1.7
401.bzip2 3.0 4.6 5.9 41.7% 2.5 1.1 1.9 1.0 3 1.4

403.gcc 108.0 129.0 255.0 97.7% 126.1 7.7 68.1 4.8 33 4.4
429.mcf 1.0 1.6 2.6 60.0% 1.6 0.4 1.1 0.3 2 1.3

445.gobmk 30.4 35.4 41.0 15.7% 16.6 1.4 8.7 1.1 9 1.3
456.hmmer 12.0 11.3 11.5 1.3% 1.1 0.3 1.1 0.3 2 1.0

458.sjeng 4.4 5.1 6.6 30.0% 3.1 1,0 2.2 0.8 4 1.6
462.libquantum 1.8 1.8 1.8 0.0% 0.6 0.1 0.5 0.2 2 1.1

464.h264ref 20.6 26.7 27.7 3.7% 7.2 1.1 5.4 1.0 3 1.1
471.omnetpp 39.5 38.8 63.6 64.0% 18.2 3.1 10.6 2.0 7 1.9

473.astar 2.0 2.6 2.6 -0.4% 0.5 0.3 0.5 0.3 1 1.0
483.xalancbmk 278.7 257.0 333.5 29.8% 63.3 2.5 35.3 2.0 16 1.2

Geo Mean 28.0% 18.8 1.9 11.5 1.3 1.6

Table 4. Full and incremental rebuild times for SPEC 2006 INT, in [sec], at parallelism level 1, 2

FDO LIPO
Benchmark objects profiles % objects profiles %

400.perlbench 2406827 491960 20.4% 2660211 876172 33.0%
401.bzip2 113082 18028 15.9% 141074 33852 24.0%

403.gcc 8145095 1450064 17.8% 10081375 3036424 30.1%
429.mcf 49456 4436 8.0% 63176 17048 27.0%

445.gobmk 5631666 353504 6.3% 5845274 632056 10.8%
456.hmmer 560264 101948 18.2% 561944 225048 40.1%

458.sjeng 341184 39020 11.4% 372416 83156 22.3%
462.libquantum 86424 13800 16.0% 86408 40272 46.6%

464.h264ref 1098496 136244 12.4% 1094216 261684 23.9%
471.omnetpp 2160915 423876 19.6% 2585539 1053220 40.7%

473.astar 98920 17436 17.6% 98272 51892 52.8%
483.xalancbmk 17856968 3975728 22.3% 18399040 8669508 47.1%

Total 38549297 7026044 18% 41988945 14980332 36%
Overhead 45575341 56969277 25%

Table 5. Object and profile file sizes in [byte], and overhead, for SPEC2006 INT, for FDO and LIPO

We attribute the small average group size to the fact that this C++
source base has been tuned for years, and, in absence of an inter-
procedural optimizer, all performance critical code has been moved
into C++ header files.

5. Discussion
In this paper we made a case for combining inter-procedural opti-
mization with FDO and describe and contrast existing IPO frame-
works with our new LIPO approach. Compared to existing ap-
proaches, we no longer require writing of the compiler IR to disk,
no longer need a link time optimizer, and minimize code regener-
ation overhead. This design leads to improvements of an order of
magnitude for compile time and resource requirement and makes
IPO amenable to distributed build systems.

Training phase runtime overhead is 32% on average. We made
an explicit design decision to trade in this runtime penalty against
small profile file sizes, assuming that training runs are generally
short. This is a decision we may want to revisit in the future, or
offer under an option.

The file size overhead is at 25%. This is an order of magnitude
smaller than the 4x to 10x overheads of existing infrastructures. The
compile time overhead for full builds is less than 30%, compared

to factors of 2x and higher for existing infrastructures, and builds
can be distributed, which is not easily possible in existing systems.
Incremental builds are done in seconds on average, compared to
minutes and hours in existing approaches, which always have to run
a full IPO and a full code generation phase, even after small code
changes. This fast behavior is enabled by small average module
groups containing only 1.3 - 1.6 files, and deletion of redundant
compiler IR.

LIPO’s current main disadvantages are the following.

• We currently don’t support full program analysis. While of
course all program modules can be grouped into a single com-
pilation, e.g., similar to LLVM’s approach, such an approach
won’t scale to very large applications.

• LIPO does require FDO.
• Mixed language support is hard, in particular for compilers that

maintain language-specific front-ends. In this paper, we only
generated non-mixed language module groups.

The results presented in this paper are based on gcc 4.4. An
updated implementation for gcc 4.5 is available on the public gcc
branch lw-ipo. We believe that the concepts in LIPO are general
and can be implemented in other compilers.

Benchmark Perf Mods Aux Triv Mx Avg CG Edg Sum Total Hot %
BigTable -0.73% 1803 1519 1613 63 1.84 52576 2077481070 4223 8.0%

Ad Delivery +4.56% 2441 329 2365 18 1.13 28014 8660809169 934 3.3%
Indexer +0.54% 3631 514 3471 18 1.14 56937 1325046290 1594 2.8%
Search +1.48% 2410 369 2323 20 1.15 28748 3067176774 1003 3.5%

OCR +3.61% 1029 322 952 20 1.31 7226 290777838 476 6.6%
Search Quality +3.19% 1232 36 1218 10 1.02 15540 3272632527 95 0.6%

Sawzall +0.62% 2285 103 2254 15 1.04 30072 435312950 227 0.7%
Video Converter +6.52% 86 39 78 13 1.45 1797 358857930 306 17.0%

Compression +6.99% 224 15 218 7 1.06 2271 126211312 81 3.6%
Geo Mean +2.94% 1.24 5.0%

Table 6. Industrial applications performance, module grouping information, and statistics on dynamic call graph edges, sum total of all edge
weights, and number/percentage of hot edges.

6. Future Work
Besides fine tuning of the clustering algorithm and relevant heuris-
tics, we will gradually add existing IP optimizations to LIPO, many
of which have been mentioned in the introduction. We plan to work
on some of LIPO’s disadvantages, in particular, we are evaluating
summary based approaches to allow classic IPO optimizations that
need whole program analysis. We’re also interested in using sample
based profiling instead of instrumented FDO, as this would elimi-
nate the FDO instrumentation and training phase [17]. The fact that
the IPA analysis phase runs at execution time allows for the de-
velopment of interesting new techniques, which we are evaluating.
This should become a rich area of research.

7. Acknowledgements
We wanted to thank Urs Hoelzle for his early comments on this
paper, as well as the anonymous reviewers for their invaluable
feedback.

References
[1] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in

C++ programs. In ECCOP ’96: Proceedings of the 10th European
Conference on Object-Oriented Programming, pages 142–166, Lon-
don, UK, 1996. Springer-Verlag. ISBN 3-540-61439-7.

[2] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive
inlining. SIGPLAN Not., 32(5):134–145, 1997. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/258916.258928.

[3] Andrew Ayers, Stuart de Jong, John Peyton, and Richard
Schooler. Scalable cross-module optimization. SIG-
PLAN Not., 33(5):301–312, 1998. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/277652.277745.

[4] Thomas Ball and James R. Larus. Optimally profiling and tracing
programs. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
59–70, New York, NY, USA, 1992. ACM. ISBN 0-89791-453-8. doi:
http://doi.acm.org/10.1145/143165.143180.

[5] Dhruva R. Chakrabarti, Luis A. Lozano, Xinliang D. Li, Robert Hundt,
and Shin-Ming Liu. Scalable high performance cross-module inlining.
In PACT ’04: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, pages 165–176,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-
2229-7. doi: http://dx.doi.org/10.1109/PACT.2004.25.

[6] P. P. Chang and W.-W. Hwu. Inline function expansion for compiling
C programs. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989
Conference on Programming language design and implementation,
pages 246–257, New York, NY, USA, 1989. ACM. ISBN 0-89791-
306-X. doi: http://doi.acm.org/10.1145/73141.74840.

[7] Chris Lattner, Private Communication.

[8] Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural
optimization: Eliminating unnecessary recompilation. In SIGPLAN
’86: Proceedings of the 1986 SIGPLAN symposium on Compiler con-
struction, pages 58–67, New York, NY, USA, 1986. ACM. ISBN 0-
89791-197-0. doi: http://doi.acm.org/10.1145/12276.13317.

[9] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment
with inline substitution. Softw. Pract. Exper., 21(6):581–601, 1991.
ISSN 0038-0644. doi: http://dx.doi.org/10.1002/spe.4380210604.

[10] Jack W. Davidson and Anne M. Holler. A study of a C function inliner.
Softw. Pract. Exper., 18(8):775–790, 1988. ISSN 0038-0644. doi:
http://dx.doi.org/10.1002/spe.4380180805.

[11] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
ECOOP ’95: Proceedings of the 9th European Conference on Object-
Oriented Programming, pages 77–101, London, UK, 1995. Springer-
Verlag. ISBN 3-540-60160-0.

[12] distcc, A fast free distributed C/C++ compiler. http://distcc.samba.org.
URL http://distcc.samba.org.

[13] M.W. Hall. Managing interprocedural optimization. In PhD Disserta-
tion, 1991.

[14] Donald E. Knuth. An empirical study of FORTRAN
programs. Software: Practice and Experience, 1(2):
105–133, 1971. doi: 10.1002/spe.4380010203. URL
http://dx.doi.org/10.1002/spe.4380010203.

[15] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO04), March 2004.

[16] Sungdo Moon, Xinliang D. Li, Robert Hundt, Dhruva R. Chakrabarti,
Luis A. Lozano, Uma Srinivasan, and Shin-Ming Liu. SYZYGY - a
framework for scalable cross-module IPO. In CGO ’04: Proceedings
of the international symposium on Code generation and optimization,
page 65, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2102-9.

[17] Vinodha Ramasamy, Paul Yuan, Dehao Chen, and Robert Hundt.
Feedback-directed optimizations in gcc with estimated edge profiles
from hardware event sampling. In Proceedings of GCC Summit 2008,
2008.

[18] Amitabh Srivastava and David W. Wall. A practical system for inter-
module code optimization at link-time. In Journal of Programming
Language, pages 1–18, 1992.

[19] The Open64 Compiler Suite. www.open64.net. URL
http://www.open64.net.

