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Abstract

This paper presents a novel theoretical study of
the general problem of multiple source adapta-
tion using the notion of Rényi divergence. Our
results build on our previous work [12], but
significantly broaden the scope of that work in
several directions. We extend previous mul-
tiple source loss guarantees based on distribu-
tion weighted combinations to arbitrary target
distributionsP , not necessarily mixtures of the
source distributions, analyze both known and
unknown target distribution cases, and prove a
lower bound. We further extend our bounds to
deal with the case where the learner receives an
approximate distribution for each source instead
of the exact one, and show that similar loss guar-
antees can be achieved depending on the diver-
gence between the approximate and true distri-
butions. We also analyze the case where the la-
beling functions of the source domains are some-
what different. Finally, we report the results of
experiments with both an artificial data set and
a sentiment analysis task, showing the perfor-
mance benefits of the distribution weighted com-
binations and the quality of our bounds based on
the Rényi divergence.

1 Introduction

The standard analysis ofgeneralizationin theoretical and
applied machine learning relies on the assumption that
training and test points are drawn according to the same
distribution. This assumption forms the basis of common
learning frameworks such as the PAC model [17]. But, a
number of learning tasks emerging in practice present an
even more challenging generalization where the distribu-
tion of training points somewhat differs from that of the
test points.

A general version of this problem is known as thedomain

adaptationproblem where very few or no labeled points
are available from thetarget domain, but where the learner
receives a labeled training sample from asource domain
somewhat close to the target domain and where he typi-
cally can further access a large set of unlabeled points from
a target domain. This problem arises in a variety of natu-
ral language processing tasks such parsing, statistical lan-
guage modeling, text classification [15, 7, 16, 9, 10, 4, 6],
or speech processing [11, 8, 14] and computer vision [13]
tasks, as well as in many other applications. Several recent
studies deal with some theoretical aspects of this adaptation
problem [2, 3].

A more complex variant of this problem arises in senti-
ment analysis and other text classification tasks where the
learner receives information fromseveraldomain sources
that he can combine to make predictions about a target do-
main. As an example, often appraisal information about a
relatively small number of domains such asmovies, books,
restaurants, or musicmay be available, but little or none is
accessible for more difficult domains such astravel. This
is known as themultiple source adaptation problem. In-
stances of this problem can be found in a variety of other
natural language and image processing tasks. A problem
with multiple sources but distinct from domain adaptation
has also been considered by [5] where the sources have the
same input distribution but can have different labels, mod-
ulo some disparity constraints.

We recently introduced and analyzed the problem of adap-
tation with multiple sources [12]. The problem is formal-
ized as follows. For each source domaini ∈ [1, k], the
learner receives the distribution of the input pointsQi,
as well as a hypothesishi with loss at mostǫ on that
source. The task consists of combining thek hypotheses
hi, i∈ [1, k], to derive a hypothesish with a loss as small
as possible with respect to the target distributionP . Differ-
ent scenarios can be considered according to whether the
distributionP is known or unknown to the learner.

We showed that solutions based on a simple convex com-
bination of thek source hypotheseshi can perform very
poorly and pointed out cases whereanysuch convex com-



bination would incur a classification error of half, even
when each source hypothesishi makes no error on its do-
mainQi [12]. We proposed insteaddistribution weighted
combinationsof the source hypotheses, which are combi-
nations of source hypotheses weighted by the source dis-
tributions. We showed that, remarkably, for a fixed target
function, there exists a distribution weighted combination
of the source hypotheses whose loss is at mostǫ with re-
spect toanymixtureP of thek source distributionsQi.

This paper presents a novel theoretical study of the gen-
eral problem of multiple source adaptation using the notion
of Rényi divergence[1]. Our results build on our previous
work [12], but significantly broaden the scope of that work
in several ways. We extend previous multiple source loss
guarantees to arbitrary target distributionsP not necessar-
ily mixtures of the source distributions: we show that for
a fixed target function, there exists a distribution weighted
combination of the source hypotheses whose loss can be
bounded with respect to the maximum loss of the source
hypotheses and the Rényi divergence between the target
distribution and the class of mixtures distributions.

We further extend our bounds to deal with the case where
the learner receives an approximate distributionQ̂i for each
sourcei instead of the true distributionQi, and show that
similar loss guarantees can be achieved depending on the
divergence between the approximate and true distributions.
We also analyze the case where the labeling functionsfi

of the source domains are somewhat different. We show
that our results can be extended to tackle this situation as
well, assuming that the functionsfi are “close” to the target
function on the target distribution, but not necessarily on
the source distributions.

Much of our results are based on a family of information
theoretical divergences introduced by Alfred Rényi [1],
which share some of the properties of the standard rela-
tive entropy or Kullback-Leibler divergence and include it
as a special case, but form an extension based on the the-
ory of generalized means. The Rényi divergences come up
naturally in our analysis to measure the distance between
distributions and seem to be closely related to the adapta-
tion generalization bounds.

The next section introduces these divergences as well as
other preliminary notation and definitions. Section 3 gives
general learning bounds for multiple source adaptation.
This includes the analysis of both known and unknown tar-
get distribution cases, the proof of lower bounds, and the
study of some natural combining rules. Section 4 presents
a generalization of several of these results to the case of
approximate source distributionŝQi. Section 5 presents an
extension to multiple labeling functionsfi. Section 6 re-
ports the results of experiments with both an artificial data
set and a sentiment analysis task showing the performance
benefits of the distribution weighted combinations and the

quality of our bounds based on the Rényi divergence.

2 Preliminaries

2.1 Multiple Source Adaptation Problem

Let X be the input space,f : X → R the target function,
andL : R×R → R a loss function. The loss of a hypothesis
h with respect to a distributionP is denoted byLP (h, f)
and defined asLP (h, f) = Ex∼P [L(h(x), f(x))] =∑

x∈X L(h(x), f(x)) P (x). We denote by∆ the simplex

of R
k: ∆ = {λ ∈ R

k : λi ≥ 0 ∧
∑k

i=1 λi = 1}.

We consider an adaptation set-up withk source domains
and a single target domain as in [12]. The input to the prob-
lem is a target distributionP , a set ofk source distributions
Q1, . . . , Qk and k corresponding hypothesesh1, . . . , hk

such that for alli ∈ [1, k], LQi
(hi, f) ≤ ǫ, for a fixed

ǫ ≥ 0. The adaptation problem consists of combing the hy-
potheseshis to derive a hypothesis with small loss on the
target distributionP .

A combining rulefor the hypotheses takes as an input the
his and outputs a single hypothesish : X → R. A particu-
lar combining rule introduced in [12] that we shall also use
here is thedistribution weighted combining rulewhich is
based on a parameterz ∈∆ and defines the hypothesis by
hz(x) =

∑k
i=1

ziQi(x)P
k
j=1 zjQj(x)

hi(x) when
∑k

j=1 zjQj(x)>

0 andhz(x) = 0 otherwise, for allx ∈ X . We denote byH
the set of all distribution weighted combination hypotheses.

We assume that the following properties hold for the loss
function L: (i) L is non-negative: L(x, y) ≥ 0 for
all x, y ∈ R; (ii) L is convex with respect to the first
argument: L(

∑k
i=1 λixi, y) ≤

∑k
i=1 λiL(xi, y) for all

x1, . . . , xk, y ∈ R andλ ∈ ∆; (iii) L is bounded: there
existsM ≥ 0 such thatL(x, y) ≤ M for all x, y ∈ R. An
example of loss function verifying these assumptions is the
absolute lossdefined byL(x, y) = |x − y| or the0-1 loss,
L01, defined for Boolean functions byL(0, 1)=L(1, 0)=1
andL(0, 0)=L(1, 1)=0.

2.2 Rényi Entropy and divergence

TheRényi entropyHα of a distributionP is parameterized
by a real numberα, α>0 andα 6=1, and defined as

Hα(P ) =
1

1 − α
log

∑

x∈X

Pα(x). (1)

For α ∈ {0, 1, +∞}, Hα is defined as the limit ofHλ

for λ → α. Let us review some specific values of
α and the corresponding interpretation of the Rényi en-
tropy. For α = 0, the Rényi entropy can be written as
H0(P ) = log | supp(P )|, wheresupp(P ) is the support of
P : supp(P ) = {x : P (x) > 0}. For α = 1, we obtain the
Shannon entropy:H1(P ) = −

∑
x∈X P (x) log P (x). For



α=2, H2(P )=− log
∑

x∈X P 2(x) is the logarithm of the
collision probability:H2(D)=− log PrY1,Y2∼P [Y1 = Y2].
Finally, H∞(P ) = − log supx∈X P (x). It can be shown
that the Rényi entropy is a non-negative decreasing func-
tion of α: Hα1(P )>Hα2(P ) for α1 <α2.

Our analysis of the multiple adaptation problem makes use
of theRényi Divergencewhich is parameterized byα as for
the Rényi entropy and defined by

Dα(P‖Q) =
1

α − 1
log

∑

x

P (x)

(
P (x)

Q(x)

)α−1

. (2)

For α = 1, D1(P‖Q) coincides with the standard rela-
tive entropy or KL-divergence. Forα = 2, D2(P‖Q) =

log Ex∼P
P (x)
Q(x) is the logarithm of the expected probabil-

ities ratio. Forα = ∞, D∞(P‖Q) = log supx∈X
P (x)
Q(x) ,

which bounds the maximum ratio between the two proba-
bility distributions. We will denote bydα(P‖Q) the expo-
nential in base 2 of the Rényi divergence:

dα(P‖Q) = 2Dα(P‖Q) =

[ ∑

x

Pα(x)

Qα−1(x)

] 1
α−1

. (3)

Given a class of distributionsQ, we denote byDα(P‖Q)
the infimum infQ∈Q Dα(P‖Q). We will concentrate on
the case whereQ is the class of all mixture distributions
over a set ofk source distributions, i.e.,Q = {Qλ : Qλ =∑k

i=1 λiQi, λ ∈ ∆}. It can be shown that the Rényi Di-
vergence is always non-negative and that for anyα > 0,
Dα(P‖Q)=0 iff P =Q, (see [1]).

3 Multiple Source Adaptation Guarantees

3.1 Known Target Distribution

Here, we assume that the target distributionP is known to
the learner. We give a general method for determining a
multiple source hypothesis with good performance. This
consists of computing a mixtureλ such thatQλ minimizes
Dα(P‖Q) and selecting the distribution weighted hypoth-
esishλ based on the parameterλ found. The hypothesishλ

is proven to benefit from the following guarantee:

LP (hλ, f) ≤ (dα(P‖Q) ǫ)
α−1

α M
1
α . (4)

Note that in the determination ofλ we do not use any infor-
mation regarding the various hypotheseshi. We start with
the following useful lemma which relates the average loss
based on two different distributions and the Rényi diver-
gence between these distributions.

Lemma 1 For any distributionsP andQ, functionsf and
h and lossL andα>1, the following inequalities hold:

LP (h, f) ≤
(
dα(P‖Q)Ex∼Q[L

α
α−1 (h(x), f(x))]

) α−1
α

≤ (dα(P‖Q)LQ(h, f))
α−1

α M
1
α .

Proof: The lemma follows from the following:

LP (h, f) =
∑

x

P (x)

Q
α−1

α (x)
Q

α−1
α (x)L(h(x), f(x))

≤

[∑

x

Pαx)

Qα−1(x)

] 1
α [∑

x

Q(x)L
α

α−1 (h(x), f(x))
] α−1

α

= (dα(P‖Q))
α−1

α

[
E

x∼Q
[L

α
α−1 (h(x), f(x))]

] α−1
α

,

where we used Hölder’s inequality. The second inequality
in the statement of the lemma follows from the upper bound
M on the lossL.

We now use this result to prove a general guarantee for
adaptation with multiple sources.

Theorem 2 Consider the multiple source adaptation set-
ting. For any distributionP there is a hypothesishλ(x) =∑k

i=1
λiQi(x)
Qλ(x) hi(x), such that

LP (hλ, f) ≤ (dα(P‖Q) ǫ)
α−1

α M
1
α .

Proof: Let Qλ(x) =
∑k

i=1 λiQi(x) be the mixture distri-
bution that minimizesDα(P‖Qλ). The average loss of the
hypothesishλ for the distributionQλ can be bounded as
follows,

LQλ
(hλ, f) =

∑

x

Qλ(x)L
( ∑

i

λiQi(x)

Qλ(x)
hi(x), f(x)

)

≤
∑

x

∑

i

λiQi(x)L(hi(x), f(x))

=
∑

i

λiLQi
(hi, f) ≤ ǫ,

where the first inequality follows from the convexity ofL.
By Lemma 1, this implies that

LP (hλ, f) ≤ (dα(P‖Qλ) ǫ)
α−1

α M
1
α .

The case where the target distribution is a mixture, i.e.,
P ∈ Q, is the special case treated by [12]. Specifically,
whenP ∈ Q, thendα(P‖Q) = 1 for anyα, in particular,
d∞(P‖Q) = 1, which implies the following corollary.

Corollary 3 Consider the multiple source adaptation set-
ting. For any mixture distributionP ∈ Q there ex-
ists a hypothesishλ(x) =

∑k
i=1

λiQi(x)
Qλ(x) hi(x) such that

LP (hλ, f) ≤ ǫ.

3.2 Unknown Target Distribution

This section considers the case where the target distribution
is unknown. Clearly, the performance of the hypothesis
depends on the target distribution, but here the hypothesis



selected is determined without knowledge of the target dis-
tribution, and is based only on the source distributionsQi

and the matching hypotheseshi. Remarkably, the general-
ization bound obtained is very similar to that of Theorem 2.
We start with the following theorem of [12].

Theorem 4 ([12]) Let U(x) be the uniform distribution
overX . Consider the multiple source adaptation setting.
For anyδ > 0, there exists a function

hλ,η =

k∑

i=1

λiQi(x) + (η/k)U(x)
∑k

j=1 λjQj(x) + ηU(x)
hi(x),

whose average loss for any mixture distributionQµ is
bounded by:LQµ

(hλ,η, f) ≤ ǫ + δ.

We shall use this theorem in our setting.

Theorem 5 Consider the multiple source adaptation set-
ting. For anyδ > 0, there exists a function

hλ,η =
k∑

i=1

λiQi(x) + (η/k)U(x)
∑k

j=1 λjQj(x) + ηU(x)
hi(x),

whose average loss for any distributionP is bounded by,

LP (hλ,η, f) ≤
[
dα(P‖Q)(ǫ + δ)

] α−1
α M

1
α .

Proof: Let Qµ be the mixture which minimizesdα(P‖Q).
By Lemma 1, the following holds:

LP (h, f) ≤
(
dα(P‖Qµ)LQµ

(h, f)
)α−1

α M
1
α .

Selecting the hypothesishλ,η guaranteed by Theorem 4
yieldsLQµ

(hλ,η, f) ≤ ǫ + δ.

3.3 Lower Bound

This section shows that the bounds derived in Lemma 1,
Theorem 2, and Theorem 5 are almost tight. For the lower
bound, we assume that all distributionsQi and hypotheses
hi are identical, i.e.,Qi = Q andhi = h for all i ∈ [1, k].
This implies that for anyλ∈∆ the equalitiesQλ = Q and
hλ = h (in fact, any “reasonable” combining rule would
returnh). This leads to the following lower bound for a
target distributionP .

Theorem 6 Let L be the 0-1 loss. For any distributionQ,
Boolean hypothesish, and Boolean target functionf such
that LQ(h, f) = ǫ, for any δα ≥ 1

α−1 log(1 + ǫ), there
exists a target distributionP such thatDα(P‖Q) ≤ δα

andLP (h, f)=[2(α−1)δα − 1]
1
α ǫ

α−1
α .

Proof: Given two Boolean functionsh and f let Err
denote the domain over which they disagree:Err =
{x : f(x) 6= h(x)}. By assumption,Q(Err) = ǫ. Let

r =
[

2(α−1)δα−1
ǫ

] 1
α ≥ 1. Define the distributionP as fol-

lows: for anyx ∈ Err, P (x) = rQ(x), and for anyx 6∈
Err, P (x) = 1−rǫ

1−ǫ Q(x). Observe thatP defines indeed a
distribution. Furthermore, by construction,P (Err) = rǫ.
We now show thatDα(P‖Q) ≤ δα.

dα(P‖Q) =

[∑

x

Pα(x)

Qα−1(x)

] 1
α−1

=

[ ∑

x∈Err

Pα(x)

Qα−1(x)
+

∑

x 6∈Err

Pα(x)

Qα−1(x)

] 1
α−1

=
[
rǫ(r)α−1 + (1 − rǫ)

(
1−rǫ
1−ǫ

)α−1] 1
α−1

≤ (rαǫ + 1)
1

α−1 = 2δα .

which completes the proof.

The lower bound of Theorem 6 is almost tight, when com-
pared to Lemma 1. The ratio between the upper bound
(Lemma 1) and the lower bound (Theorem 6) is only
[1 − (dα(P‖Q))−(α−1)]

1
α . In addition, forDα(P‖Q) <

1
α−1 log(1 + ǫ), by Lemma 1, we have thatLP (h, f) ≤

(1 + ǫ)
1
α (ǫ)

α−1
α .

3.4 Simple Combining Rules

In this section, we consider a set of “simple” combining
rules and derive an upper bound on their loss. These com-
bining rules are simple in the sense that they do not de-
pend at all on the target distribution but only slightly on
the source distributions. Specifically, we consider the fol-
lowing family of hypothesis combinations, which we call
r-norm combinations:

hr-norm(x) =
k∑

i=1

Qr
i (x)

∑k
j=1 Qr

j(x)
hi(x).

The r-norm combinations include several natural combi-
nation rules. Forr = 1, we obtain theuniform combining
rule:

huni(x) =

k∑

i=1

Qi(x)
∑k

j=1 Qj(x)
hi(x),

which is a distribution weighted combination rule. The
valuer = ∞ gives themaximum combining rule,

hmax(x) = himax
(x) whereimax = argmax

j
Qj(x).

For ther-norm combining rules we will make an assump-
tion based on the following definition relating the target
distributionP and the source distributionsQi.

Definition 7 A distribution P is (ρ, r)-norm-boundedby
distributionsQ1, . . . , Qk if for all x ∈ X and r ≥ 1, the
following holds:P (x) ≤ ρ [

∑k
i=1 Qr

i (x)]1/r .



We can now establish the performance of anr-norm
hypothesishr-norm in the case whereP is (ρ, r)-norm-
bounded byQ1, . . . , Qk.

Theorem 8 For any distributionP that is (ρ, r)-norm-
bounded byQ1, . . . , Qk, the average loss ofhr-norm is
bounded as follows:LP (hr-norm, f) ≤ ρkǫ.

Proof: By the convexity of the loss functionL,

LP (hr-norm, f) =
X

x

P (x)L
“ X

i

Qr
i (x)P

j Qr
j(x)

hi(x), f(x)
”

≤
X

x

kX

i=1

Qr
i (x)

P (x)P
j Qr

j (x)
L(hi(x), f(x))

=
X

x

kX

i=1

Qi(x)
“ Qr

i (x)P
j Qr

j(x)

”
1−

1
r P (x)

(
P

j Qr
j (x))

1
r

L(hi(x), f(x))

≤
X

x

kX

i=1

Qi(x)ρL(hi(x), f(x)) = ρ

kX

i=1

ǫi ≤ ρkǫ,

where the second inequality uses the assumption thatP is
(ρ, r)-norm-bounded bounded byQ1, . . . , Qk.

The following lemma relates the notion of(ρ, r)-norm-
boundedness to the Rényi divergence.

Lemma 9 For any distributionP that is (ρ, r − 1)-norm-
bounded byQ1, . . . , Qk, the following inequality holds:

Dr(P‖Qu) ≤ log kρ,

whereQu(x) =
∑k

i=1(1/k)Qi(x).

Proof: By definition ofdr−1
r (P‖Qu), we can write

dr−1
r (P‖Qu) =

∑

x

P (x)
P r−1(x)

(
∑k

i=1
1
kQi(x))r−1

= kr−1
∑

x

P (x)
P r−1(x)

(
∑k

i=1 Qi(x))r−1

≤ kr−1
∑

x

P (x)
P r−1(x)

∑k
i=1 Qr−1

i (x)

≤ kr−1
∑

x

P (x)ρr−1 = (kρ)r−1.

Taking thelog gives the bound on the divergence:

Dr(P‖Qu) ≤
1

r − 1
log(kρ)r−1 = log kρ.

We can now derive a bound for an arbitrary hypothesish in
the case whereP is (ρ, r)-norm-bounded byQ1, . . . , Qk,
as a function of the loss on the individual domainsQi.

Theorem 10 For any distributionP that is (ρ, r − 1)-
norm-bounded byQ1, . . . , Qk the following bound holds:

LP (h, f) ≤

[
ρ

k∑

i=1

LQi
(h, f)

] r−1
r

M
1
r . (5)

4 Approximate Distributions

This section discusses the case where instead of the true
distributionQi for sourcei, the learner has access only to
an approximation̂Qi. This is a situation that can arise in
practice: a hypothesishi is learned by training on a labeled
sample drawn fromQi, which is also used to derive a model
Q̂i for the distributionQi. As before, we shall assume that
the average loss of each hypothesishi is at mostǫ with
respect to the original distributionQi and deal separately
with the cases of a known or unknown target distribution.

4.1 Known Target Distribution

We wish to proceed as in Section 3.1, where we deter-
mine the parameterλ that minimizes the divergence be-
tweenP and a mixture of the source distributions. How-
ever, since here we are only given approximate source
distributions, we need to modify that approach as fol-
lows: (1) since we only have access tôQi, we shall com-
pute a mixturêλ = argminµ Dα(P‖Q̂) rather thanλ =

argminµ Dα(P‖Q), whereQ̂ is the set of mixture distri-

butions overQ̂i; (2) our hypothesis will be based on̂Qi:

hµ(x) =
∑k

i=1
µi

bQi(x)
bQµ(x)

hi(x).

The following lemma relates the divergence of the individ-
ual distributions to that of the mixture.

Lemma 11 Letα>1. For anyµ ∈ ∆, the following holds:

Dα(Qµ‖Q̂µ) ≤ max
i

Dα(Qi‖Q̂i).

Proof: For α > 1 the functiong : (x, y) 7→ xα/yα−1 is
convex.1 Thus, we can write

dα−1

α (Qµ‖ bQµ) =
X

x

Qα
µ(x)

bQα−1
µ (x)

=
X

x

[
Pk

i=1
µiQi(x)]α

[
Pk

i=1
µi

bQi(x)]α−1

≤
X

x

X

i

µi
Qα

i (x)

bQα−1

i (x)
=

X

i

µid
α−1

α (Qi‖ bQi)

≤ max
i

dα−1

α (Qi‖ bQi).

The next lemma establishes a triangle inequality-like prop-
erty with a slight increase of the parameterα.

Lemma 12 For anyα>1, the following inequality holds:

Dα(P‖Q̂) ≤ D2α(P‖Q) + D2α−1(Q‖Q̂).

Proof: By definition of the divergenceDα and by the

1The convexity ofg follows from the semi-definite positive-
ness of the Hessian. It can be shown that it has one positive and
one zero eigenvalue.



Cauchy-Schwartz inequality, the following holds:

dα−1

α (P‖ bQ) =
X

x

P α(x)

bQα−1(x)
=

X

x

P α(x)

Qα−1/2(x)

Qα−1/2(x)

bQα−1(x)

≤

sX

x

P 2α(x)

Q2α−1(x)

sX

x

Q2α−1(x)

bQ2α−2(x)

= d
2α−1

2
2α (P‖Q) d

2α−2
2

2α−1
(Q‖ bQ).

Taking thelog yields

(α−1)Dα(P‖ bQ) ≤ (α−
1

2
)D2α(P‖Q)+(α−1)D2α−1(Q‖ bQ)

and thus

Dα(P‖Q̂) ≤
α − 1

2

α − 1
D2α(P‖Q) + D2α−1(Q‖Q̂)

≤ D2α(P‖Q) + D2α−1(Q‖Q̂),

which completes proof of the lemma.

We can now establish the main theorem of this section. The
bound presented depends only on the divergence between
P andQ (the mixtures of the true distributions) and the
divergence between the approximated distributionsQ̂i and
the true distributionQi.

Theorem 13 Let λ = argminµ Dα(P‖Qµ) and λ̂ =

argminµ Dα(P‖Q̂µ). Then,

LP (hbλ, f) ≤ ǫγ2

dγ
2α(P‖Q)M

1+γ
α ·

max
i

dγ
2α−1(Qi‖Q̂i) max

i
dγ2

α (Q̂i‖Qi),

whereγ = α−1
α .

Proof: By Lemma 1, we can write

LP (hbλ, f)≤ [dα(P‖Q̂bλ)]γLγ
bQbλ

(hbλ, f)M
1
α .

By convexity ofL, L bQbλ
(hbλ, f) can be bounded by

k∑

i=1

λ̂iL bQi
(hi, f) ≤

k∑

i=1

λ̂i[dα(Q̂i‖Qi)]
γLγ

Qi
(hi, f)M

1
α

≤ ǫγM
1
α

k
max
i=1

(dα(Q̂i‖Qi))
γ ,

where the first inequality uses Lemma 1, and the last one
our assumption on the loss ofhi. By definition of λ̂, the
divergenceDα(P‖Q̂bλ) can be bounded by

Dα(P‖Q̂λ) ≤ D2α(P‖Qλ) + D2α−1(Qλ‖Q̂λ)

≤ D2α(P‖Qλ) + max
i

D2α−1(Qi‖Q̂i),

where the first inequality holds by Lemma 12 and the last
one by Lemma 11. The theorem follows from combining
the inequalities just derived.

4.2 Unknown Target Distribution

In this section we address the case where the target distri-
butionP is unknown, as in Section 3.2. One main concep-
tual difficulty here is that we are given the distributionsQ̂i,
but the assumption on the average loss of the hypothesishi

holds forQi, notQ̂i. Another issue is that we wish to give
a generalization bound that depends on the divergence be-
tweenP andQ, rather than the divergence betweenP and
Q̂. The following theorem bounds the average loss with
respect to an arbitrary mixture of the approximate distribu-
tions.

Theorem 14 Consider the multiple source adaptation set-
ting where the learner receives access to an approximate
distributionQ̂i instead of the true distributionQi of source
i. Then, for anyδ>0, there exists an approximate distribu-
tion weighted combination hypothesis

hλ,η =

k∑

i=1

λiQ̂i(x) + (η/k)U(x)
∑k

j=1 λjQ̂j(x) + ηU(x)
hi(x),

such that for any mixture distribution̂Qµ,

L bQµ
(hλ,η, f) ≤

[
max

i
dα(Q̂i‖Qi) ǫ

]α−1
α M

1
α + δ.

Proof: Let ǫ̂ denote the maximum average lossǫ̂ =
maxi L bQi

(hi, f). By Theorem 4, for anyδ>0, there exists
a hypothesishλ,η such thatLQµ

(hλ,η, f) ≤ ǫ̂ + δ. Now,
by Lemma 1, for anyi ∈ [1, k],

L bQi
(hi, f) ≤

[
dα(Q̂i‖Qi)LQi

(hi, f)
]α−1

α M
1
α .

Since by assumptionLQi
(hi, f) ≤ ǫ, it follows that

L bQi
(hi, f) ≤

[
dα(Q̂i‖Qi) ǫ

]α−1
α M

1
α ,

for all i ∈ [1, k]. Thus, by its definition,̂ǫ can be bounded
by [maxi dα(Q̂i‖Qi) ǫ]

α−1
α M

1
α , which proves the state-

ment of the theorem.

The following corollary is a straightforward consequence
of the theorem.

Corollary 15 Consider the multiple source adaptation set-
ting where the learner receives access to an approximate
distributionQ̂i instead of the true distributionQi of source
i. Then, for anyδ>0, there exists an approximate distribu-
tion weighted combination hypothesis

hλ,η =

k∑

i=1

λiQ̂i(x) + (η/k)U(x)
∑k

j=1 λjQ̂j(x) + ηU(x)
hi(x),

such that for any distributionP ,

LP (hλ,η, f) ≤ [dα(P‖Q̂)(ǫ̂ + δ)]
α−1

α M
1
α ,

with ǫ̂ ≤ [maxi dα(Q̂i‖Qi)ǫ]
α−1

α M
1
α , and

Dα(P‖Q̂) ≤ D2α(P‖Q) + max
i

D2α−1(Qi‖Q̂i).



5 Multiple Target Functions

This section examines the case where the target or labeling
functions of the source domains are distinct.

Let fi denote the target function associated to sourcei. We
shall assume thatLP (fi, f) ≤ δ for al i ∈ [1, k], wheref
is the labeling function associated to the target domainP .
Note that we require the source functionsfi to be close to
the target functionf only on the target distribution, and not
on the source distributionQi. Thus, we do not assume that
hi has a small loss with respect tof onQi.

Here, we shall also assume that the loss function verifies the
triangle inequality: L(g1, g3) ≤ L(g1, g2) + L(g2, g3) for
all g1, g2, g3, and is convex with respect to both arguments,
i.e.,L(

∑
i µihi,

∑
i µifi) ≤

∑
i µiL(hi, fi), for all hi, fi,

i ∈ [1, k], andµ ∈ ∆.

Theorem 16 Assume that the loss functionL is convex and
obeys the triangle inequality. Then, for anyλ ∈ ∆, the
following holds:

LP (hλ, f) ≤
[
dα(P‖Qλ)ǫ

]γ
M

1
α + kδ,

whereγ = α−1
α .

Proof: Let fλ(x) =
∑k

i=1 λiQi(x)fi(x)/Qλ(x). Observe
that by convexity ofL,

LP (fλ, f) ≤
k∑

i=1

∑

x

λiQi(x)

Qλ(x)
P (x)[L(fi(x), f(x))]

≤
k∑

i=1

∑

x

P (x)[L(fi(x), f(x))] ≤ kδ.

Thus, by the triangle inequality, and Lemma 1,

LP (hλ, f) ≤ LP (hλ, fλ) + LP (fλ, f)

≤ (dα(P‖Qλ)LQλ
(hλ, fλ))

γ
M

1
α + kδ

≤
(
dα(P‖Qλ)

k∑

i=1

λiLQi
(hi, fi)

)γ

M
1
α + kδ

≤ (dα(P‖Qλ)ǫ)γ + kδ,

where the third inequality follows from the convexity ofL
and the last inequality holds by the bound assumed on the
expected loss of each source hypothesishi.

A similar bound can be given in the case where the loss
verifies only a relaxed version of the triangle inequality (β-
inequality):L(g1, g3) ≤ β(L(g1, g2) + L(g2, g3)), for all
g1, g2, g3 for someβ >0.

Theorem 17 Assuming that the lossL is convex and ver-
ifies theβ-inequality, then for anyλ ∈ ∆, the following
bound holds:

LP (hλ, f) ≤ β [dα(P‖Qλ)ǫ]
α−1

α M
1
α + βkδ.

6 Experiments

This section presents an empirical evaluation of the distri-
bution weighted combination rule based on both artificial
and real-world data.

Artificial Data: Here, we created a two-
dimensional artificial dataset using four Gaus-
sians distributions [g1, g2, g3, g4] with means
[(1, 1), (−1, 1), (−1,−1), (1,−1)] and unit variance.
The source distributionsQ1 andQ2 were generated from
the uniform mixture of[g1, g2, g3] and[g1, g3, g4], respec-
tively, and the target distributionP was generated from the
uniform mixture of[g1, . . . , g4]. The labeling function was
defined asf(x1, x2) = sign(x1x2). For training and test-
ing, we sampled5,000 points from each distribution. Note
thatP = 1

4 (g1 + . . . + g4) cannot be constructed with any
mixtureλQ1 +(1−λ)Q2 = 1

3 (g1 +λg2 +g3 +(1−λ)g4).
Also, note that the base hypotheses, when tested onP ,
misclassify all the points that fall into at least one quadrant
of the plane. However, with the use of a distribution
weighted combination rule, the appropriate base hypothe-
sis is selected depending on which quadrant a point falls
into, and this pitfall is avoided.

We used libsvm (http://www.csie.ntu.edu.tw/˜cjlin/libsvm/)
with linear kernels to produce base classifiers. We re-
port the mean squared error (MSE) of the resulting (non-
thresholded) combination rules. The mean and standard
deviation reported are measured over 100 randomly gener-
ated datasets. Figure 1(a) shows that the curve plotting the
error as a function of the mixture parameterλ has the same
shape as the Réyni divergence curve, as predicted by our
bounds. Note that forλ = 0 andλ = 1 we obtain the two
basic hypotheses.

Real-World Data: For the real-world experiments, we
used the sentiment analysis dataset of [4] also used in [12],
which consists of product review text and rating labels
taken from four different categories:books(B), dvds(D),
electronics(E) andkitchen-wares(K). Using the method-
ology of [12], we defined a vocabulary of3,900 words that
fall into the intersection of all four domains and occur at
least twice. These words were then used to train a bigram
statistical language model for each domain using the GRM
library (http://www.research.att.com/ fsmtools/grm). The same
vocabulary was then used to encode each data point as a
3,900-dimensional vector containing the number of occur-
rences of each word.

In the same vein as the artificial setting, we definedQ1

andQ2 as the uniform mixture of[E, K, D] and[E, K, B],
respectively, and the target distributionP as the uniform
mixture of[E, K, D, B]. Each base hypothesis was trained
with 2,000 points using support vector regression (SVR)
[18], also implemented by libsvm, and the mixture was
evaluated on a test set of2,666 points. The experiment was
repeated100 times with random test/train splits. Although
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Figure 1: (a) Performance of the distribution weighted combination rule for an artificial dataset, plotted as a function of the mixture
parameterλ; comparison with the Réyni divergence plotted for the sameparameter. (b) MSE of the distribution weighted combination
rule for the sentiment analysis dataset. (c) MSE of base hypotheses and distribution weighted combination. For each group, the first two
bars indicate the MSE of the base hypotheses followed by thatof the distribution weighted hypothesis. The base domains wereD and
B with target domain mixtureK/E for group 1;E andB with targetK/D for group 2; andD andE with targetB/K for group 3.

each base domain in this setting is relatively powerful, we
still see a significant improvement when using the distribu-
tion weighted combination, as shown in Figure 1(b).

In a final set of experiments, we trained each of two base
hypotheses with1,000 points from a single domain. We
then tested on a target that is a uniform mixture of the two
other domains, consisting of2,000 points. Clearly, the tar-
get is not a mixture of the base domains. These experiments
were repeated100 times with random test/train splits. As
shown in Figure 1(c), and as the caption explains in detail,
the distribution weighted combination is capable of doing
significantly better than either base hypothesis.

7 Conclusion

We presented a general analysis of the problem of multi-
ple source adaptation. Our theoretical and empirical re-
sults indicate that distribution weighted combination meth-
ods can form effective solutions for this problem, including
for real-world applications. Our analysis of approximated
distribution case and multiple labeling functions cases help
cover other related adaptation problems arising in practice.
The family of Rényi divergences naturally emerges in our
analysis as the “right” distance between distributions in this
context.
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