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Abstract

This paper presents a novel theoretical study of
the general problem of multiple source adapta-
tion using the notion of Rényi divergence. Our
results build on our previous work [12], but
significantly broaden the scope of that work in
several directions. We extend previous mul-
tiple source loss guarantees based on distribu-
tion weighted combinations to arbitrary target
distributions P, not necessarily mixtures of the
source distributions, analyze both known and
unknown target distribution cases, and prove a
lower bound. We further extend our bounds to
deal with the case where the learner receives an
approximate distribution for each source instead
of the exact one, and show that similar loss guar-
antees can be achieved depending on the diver-
gence between the approximate and true distri-
butions. We also analyze the case where the la-
beling functions of the source domains are some-
what different. Finally, we report the results of
experiments with both an artificial data set and
a sentiment analysis task, showing the perfor-
mance benefits of the distribution weighted com-
binations and the quality of our bounds based on
the Rényi divergence.

Introduction

The standard analysis generalizationin theoretical and
applied machine learning relies on the assumption thaas well as a hypothesis; with loss at most on that
training and test points are drawn according to the samsource. The task consists of combining thaypotheses
distribution. This assumption forms the basis of commonh;, i € [1, k], to derive a hypothesis with a loss as small
learning frameworks such as the PAC model [17]. But, aas possible with respect to the target distributiarDiffer-
number of learning tasks emerging in practice present agnt scenarios can be considered according to whether the
even more challenging generalization where the distribudistribution P is known or unknown to the learner.

tion of training points somewhat differs from that of the

test points.

A general version of this problem is known as ttemain
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adaptationproblem where very few or no labeled points
are available from thearget domainbut where the learner
receives a labeled training sample frons@urce domain
somewhat close to the target domain and where he typi-
cally can further access a large set of unlabeled points from
atarget domain This problem arises in a variety of natu-
ral language processing tasks such parsing, statistical la
guage modeling, text classification [15, 7, 16, 9, 10, 4, 6],
or speech processing [11, 8, 14] and computer vision [13]
tasks, as well as in many other applications. Several recent
studies deal with some theoretical aspects of this adaptati
problem [2, 3].

A more complex variant of this problem arises in senti-
ment analysis and other text classification tasks where the
learner receives information froseveraldomain sources
that he can combine to make predictions about a target do-
main. As an example, often appraisal information about a
relatively small number of domains suchrasviesbooks
restaurantsor musicmay be available, but little or none is
accessible for more difficult domains suchtesvel. This

is known as thenultiple source adaptation problemn-
stances of this problem can be found in a variety of other
natural language and image processing tasks. A problem
with multiple sources but distinct from domain adaptation
has also been considered by [5] where the sources have the
same input distribution but can have different labels, mod-
ulo some disparity constraints.

We recently introduced and analyzed the problem of adap-
tation with multiple sources [12]. The problem is formal-
ized as follows. For each source domaig [1, k], the
learner receives the distribution of the input poiids,

We showed that solutions based on a simple convex com-
bination of thek source hypotheses; can perform very
poorly and pointed out cases wheney such convex com-



bination would incur a classification error of half, even quality of our bounds based on the Rényi divergence.
when each source hypothegismakes no error on its do-

main @; [12]. We proposed insteadistribution weighted 2 Preliminaries

combinationof the source hypotheses, which are combi-
nations of source hypotheses weighted by the source dia—
tributions. We showed that, remarkably, for a fixed target
function, there exists a distribution weighted combinatio | et x' be the input spacef: X — R the target function,

of the source hypotheses whose loss is at magith re-  andf,: RxR — R aloss function. The loss of a hypothesis
spect toanymixture P of the k source distributiong);. h with respect to a distributio® is denoted byCp (1, f)

This paper presents a novel theoretical study of the ger@Nd defined asCp(h, f) = Eonp[L(h(z), f(2))] =
eral problem of multiple source adaptation using the notion—=c x L(1(2), f(2)) P(x). We denote by\ the simplex
of Renyi divergencél]. Our results build on our previous of RF: A = {x e R*: X, > 0A Y A\ =1}

work [12], but significantly broaden the scope of that work

in several ways. We extend previous _mu|t|p|e source losg asingle target domain as in [12]. The input to the prob-
guarantees to arbitrary target distributiaPsiot necessar- lem is a target distributio#®, a set oft source distributions
ily mixtures of the source distributions: we show that for 0, Or and k corresp,onding hypothesés I

aﬁx&ke)(_j tat_rget f??rc]:tlon, theriems&? a d|str|rt])ut|or|1 welghtebsuch that for alli € [1,k], Lg,(hi, f) < e, for a fixed
Eom (;nz:\j 'tho € S(:l:rcteh ypoineses \IN osef t(;lss can B> 0. The adaptation problem consists of combing the hy-
ouncied with respect o the maximum 10ss of thé sourc othesed:;s to derive a hypothesis with small loss on the
hypotheses and the Rényi divergence between the targ i
e : S rget distributionP.
distribution and the class of mixtures distributions.

1 Multiple Source Adaptation Problem

We consider an adaptation set-up wittsource domains

A combining rulefor the hypotheses takes as an input the
%l-s and outputs a single hypothesisX — R. A particu-
lar combining rule introduced in [12] that we shall also use
here is thedistribution weighted combining rulerhich is

We further extend our bounds to deal with the case wher
the learner receives an approximate distributiprior each
sourcei instead of the true distributio®;, and show that
si_milar loss guarantees can be_achieved deper-ldir)g on Msed on a parameterE A and defines the hypothesis by
divergence between the approximate and true dIStI’IbutIOI’]% (2) = Zk 2iQi(x) hi(z) whenzk 2:Q;(x)>
We also analyze the case where the labeling functipns “*\"/ = ~~i=1 3¢ 2;Q;(@) J=177%3

of the source domains are somewhat different. We shoW andh.(z) = 0 otherwise, for all: € X'. We denote byt
that our results can be extended to tackle this situation ae set of all distribution weighted combination hypotiese

well, assuming that the functiorfsare “close” to the target  \ye 455ume that the following properties hold for the loss
function on the target distribution, but not necessarily ONfynction L () L is non-negative: L(x,y) > 0 for

the source distributions. all z,y € R; (i) L is convex with respect to the first

Much of our results are based on a family of informationargument: L(Zle Xizi,y) < Zle NiL(z;,y) for all
theoretical divergences introduced by Alfred Rényi [1], z1,...,25,y € RandX € A; (i) L is bounded: there
which share some of the properties of the standard relaexistsM > 0 such thatL(z,y) < M forall z,y € R. An

tive entropy or Kullback-Leibler divergence and include it example of loss function verifying these assumptions is the
as a special case, but form an extension based on the thabsolute losslefined byL(z,y) = |« — y| or the0-1 loss

ory of generalized means. The Rényi divergences come upo1, defined for Boolean functions (0, 1) = L(1,0) =1
naturally in our analysis to measure the distance betweeandZ(0,0)=L(1,1)=0.

distributions and seem to be closely related to the adapta-

tion generalization bounds. 2.2 Rényi Entropy and divergence

The next section introduces these divergences as well 3fheRenyi entropyH,, of a distributionP is parameterized
other preliminary notation and definitions. Section 3 givesby areal number, o> 0 anda # 1, and defined as
general learning bounds for multiple source adaptation. ' '

This includes the analysis of both known and unknown tar- 1 o
get distribution cases,)/the proof of lower bounds, and the Ha(P) = 11—« log Z P(@). (3)
study of some natural combining rules. Section 4 presents

a generalization of several of these results to the case dfor o € {0,1,+oo}, H, is defined as the limit offf
approximate source distributiods. Section 5 presentsan for A — «. Let us review some specific values of
extension to multiple labeling function. Section 6 re- « and the corresponding interpretation of the Rényi en-
ports the results of experiments with both an artificial dateropy. Fora = 0, the Rényi entropy can be written as
set and a sentiment analysis task showing the performandéo(P) =log | supp(P)|, wheresupp(P) is the support of

benefits of the distribution weighted combinations and theP: supp(P) = {z: P(x) > 0}. Fora =1, we obtain the
Shannon entropyH (P) = - .y P(z)log P(x). For

reX



a=2, Hy(P)=—1log ", .+ P*(z) is the logarithm of the  Proof: The lemma follows from the following:
collision probability: Hy (D) = — log Pry, y,~p[Y1 = Y3].
Finally, H.(P) = —logsup,cy P(z). It can be shown B -1
that the Rényi entropy is a non-negative decreasing func- Lr(h, f)= Z QQT*I(:C)Q = (@) L(h(@), f(z))
tion of az Hy, (P)> H,, (P) for a; < as. ¢

Our analysis of the multiple adaptation problem makes use< {Z Wf()x)] [Z Q(x)La"7 (h(x), f(x))} =
of theRényi Divergencevhich is parameterized hy as for z z
the Rényi entropy and defined by

a—1

a—1

= (da(PQ))F | B [L757 (h(a). S@))]] © .

1 P(x))a_l
D, (P = 1 P . 2 . . . .
(PlQ) a—1 Og; (z) (Q(a:) o) where we used Holder’s inequality. The second inequality

in the statement of the lemma follows from the upper bound

For o = 1, D1(P||Q) coincides with the standard rela- - - 110 10sq. -

tive entropy or KL-divergence. Fax = 2, Ds(P||Q) = .

logE,p % is the logarithm of the expected probabil- We now use this re_sult to prove a general guarantee for
. . P(x) adaptation with multiple sources.

ities ratio. Fora = 0o, Do (P||Q) = logsup,cy @)

which bounds the maximum ratio between the two proba-Theorem 2 Consider the multiple source adaptation set-
bility distributions. We will denote byl (P|Q) the expo- ting. For any distribution? there is a hypothesis, (z) =

nential in base 2 of the Rényi divergence: Zle Aéczzg) hi(z), such that
_oDa(PlQ) _ [y _P0@) | a1
Ao (PI|Q) = 2 {Z Qal(x)] ) Lp(ha. f) < (da(P]|Q) ) F M=

Given a class of distribution®, we denote byD,, (P||Q)
the infimuminfoco Do (P[|Q). We will concentrate on
the case wher@ is the class of all mixture distributions
over a set ok source distributions, i.eQ = {Qx: Qx =

Proof: Let Qx(x) = Zle XiQ;(x) be the mixture distri-
bution that minimized,, (P||Q.). The average loss of the
hypothesish, for the distribution@, can be bounded as

Zle AiQis A € A}. It can be _shown that the Rényi Di- follows,

Pt e P SN IR WENET ok NN )
3 Multiple Source Adaptation Guarantees = ZI: Z AiQi(x) L(hi(x), f(x))

3.1 Known Target Distribution =Y NiLq.(hi, f) <,

Here, we assume that the target distributidis known to o ) )
the learner. We give a general method for determining dVhere the first inequality follows from the convexity f
multiple source hypothesis with good performance. ThisBY Lemma 1, this implies that

consists of computing a mixturesuch thatQ, minimizes ac1i 4

D, (P]|Q) and selecting the distribution weighted hypoth- Lp(hy, f) < (da(P|Qr) €) = M. u
esish) based on the parametefound. The hypothesis,

is proven to benefit from the following guarantee: The case where the target distribution is a mixture, i.e.,

P € Q, is the special case treated by [12]. Specifically,
Lp(ha, f) < (do(P|Q) E)(’%l M=, (4) whenP € Q, thend, (P||Q) = 1 for anya, in particular,

] L ) d~(P]|Q) = 1, which implies the following corollary.
Note that in the determination afwe do not use any infor-

mation regarding the various hypothegesWe start with  corollary 3 Consider the multiple source adaptation set-
the following useful lemma which relates the average l0sging.  For any mixture distributionP € Q there ex-
based on two different distributions and the Rényi diver-ig;o 4 hypothesid, () = Z/_c /\iQi(m)h‘(x) such that
gence between these distributions. =1 Qa(z) ™

EP(hka f) S €.
Lemma 1 For any distributionsP and @, functionsf and
h and lossL anda > 1, the following inequalities hold: 3.2 Unknown Target Distribution
Lp(h, f) < (da(P|Q)Esng L7 (h(z), f(2))]) = This section considers the case where the target diswibuti

a1 g is unknown. Clearly, the performance of the hypothesis
< ([da(PIlQ)L(R, f)) = M= depends on the target distribution, but here the hypothesis



selected is determined without knowledge of the target disy. — [w} « > 1. Define the distributiorP as fol-

tribution, and is based only on the source distributiQds  |ows: for anyz € Err, P(x) = rQ(z), and for anyz ¢

and the matching hypothesks Remarkably, the general- gy, P(z)=1= 1=r<Q(x). Observe thaf> defines indeed a
ization bound obtained is very similar to that of Theorem 2.djstribution. Furthermore by constructioR(Err) = re.

We start with the following theorem of [12]. We now show thaD,, (P||Q) < 4.

Theorem 4 ([12]) Let U(xz) be the uniform distribution

over X. Consider the multiple source adaptation setting. do(P||Q) = [Z o 1? } .
For any¢ > 0, there exists a function z)
k _ P (x) }1
By = Z AiQi(z) + (n/k)U(x) hi(), Lgr Qo 1( Ing:TT Qo 1(z)

i—1 Z?:l AjQj () +nU(z) ' L

o = [re(r)® " 4+ (1= re)(122)" 1)
whose average loss for any mixture distributia), is N L 5
bounded byLq, (ha,y, f) < €+ 6. < (rfe+1)e-T = 2%,

We shall use this theorem in our setting. which completes the proof. u

The lower bound of Theorem 6 is almost tight, when com-
pared to Lemma 1. The ratio between the upper bound
(Lemma 1) and the lower bound (Theorem 6) is only
k [1 — (do(P||Q))~®=D]=. In addition, forD,(P|Q) <
By = Z /\liQi(I) + (/k)U(z) hi(z), —L-log(1 + ¢), by Lemma 1, we have thatp(h, f) <

=1 2= AQj(@) + U () (1+€)a ()=

@,

Theorem 5 Consider the multiple source adaptation set-
ting. For anyd > 0, there exists a function

whose average loss for any distributiéhis bounded by,
e 3.4 Simple Combining Rules
Lplhan, f) < [da(P”Q)(E i 5)] M. In this section, we consider a set of “simple” combining
rules and derive an upper bound on their loss. These com-
bining rules are simple in the sense that they do not de-
pend at all on the target distribution but only slightly on
- the source distributions. Specifically, we consider the fol
Lp(h, f) < ( a(PlQu)Lq, (h, f)) : M"‘- lowing family of hypothesis combinations, which we call

Selecting the hypothesis, ,, guaranteed by Theorem 4 r-norm combinatiorts

yieldsLq, (hxy, f) < €+ 0. [ |

Proof: Let @), be the mixture which minimizes, (P| Q).
By Lemma 1, the following holds:

k r
hr—norm(I) = Z %hr(x)
3.3 Lower Bound i=1 2aj=1 Qj (z)

This section shows that the bounds derived in Lemma 1Ther norm combinations include several natural combi-
Theorem 2, and Theorem 5 are almost tight. For the lowefation rules. For =1, we obtain theiniform combining

bound, we assume that all distributiods and hypotheses UI€: .
h; are identical, i.e.); = @ andh; = hforalli € [1, k]. B () = Z Qi(z) hi(z)
This implies that for any\ € A the equalities), = @ and o et ;?:1 Q;(z) s

hyx = h (in fact, any “reasonable” combining rule would o o ) o
return). This leads to the following lower bound for a which is a distribution weighted combination rule. The
target distributionP. valuer = oo gives themaximum combining rule

Theorem 6 Let L be the 0-1 loss. For any distributiof, himaz (%) = Ny, () WNET€I0, = argmax Q;(z).
Boolean hypothesis, and Boolean target functiofi such !

that Lo (h, f) = ¢ foranyd, > —5 1og(1 + ¢), there  For ther-norm combining rules we will make an assump-
exists a target distributior? such thatD (PQ) < da tion based on the following definition relating the target
andLp(h, f)=[2(0" D —1]aes. distribution P and the source distributiorg;.

Proof: Given two Boolean function& and f let Err Definition 7 A distribution P is (p, r)-norm-boundedy
denote the domain over which they disagrefrr = distributions @1, ..., Qy if for all x € X andr > 1, the
{z: f(z) # h(x)}. By assumption@Q(Err) = e¢. Let  following holds:P(z) < p[ZfZl Qr ().



We can now establish the performance of amorm
hypothesish,.norm in the case where” is (p,r)-norm-
bounded byQ1, . .., Q.

Theorem 8 For any distribution P that is (p, r)-norm-
bounded byQ.,...,Q, the average l0ss Ok, norm iS
bounded as followsL p (hy-norm, ) < pke.

Proof: By the convexity of the loss functioh,
Qi (z)

P v s

Z @ >, Q)

L(hi(x), f(x))

Lp rnorm,f hl(x)vf(x))

<;le NAE) Q’( )

B f@) \'"+  P()
ELXQQ (ZQU) (ZQ’(@"))%

k
<> Qix)pL(hs = pzez < pke,
x i=1
where the second inequality uses the assumptionAhiat
(p,7)-norm-bounded bounded I8y, . .., Qy. [ |

The following lemma relates the notion @p, r)-norm-
boundedness to the Rényi divergence.

Lemma 9 For any distributionP that is (p,» — 1)-norm-
bounded by, ..., Qy, the following inequality holds:

D, (P||Qu) < logkp,
whereQ, (z) = 3>1_; (1/k)Qs(x).

Proof: By definition ofd”~!(P||Q.,), we can write

r—1 PT?I(I)
d PllQ.,) = P(x
e Z ”(2221%@1»@))“1

. P (x)
=k1N " Px
; ( )@f:l Qi(a))r—1
PT_l(gc)

<kt Ply)——————————
- Z ( >zi;1 Q! (x)

< kr_lzP(:zr)p = (kp) L.

Taking thelog gives the bound on the divergence:

D, (P|Qu) < =logkp. W

1 _
— log(kp)"
We can now derive a bound for an arbitrary hypothésis
the case wher@ is (p, r)-norm-bounded by, . .., Qx,
as a function of the loss on the individual domaips

Theorem 10 For any distribution P that is (p,r — 1)-
norm-bounded by),, .. ., @y the following bound holds:

r—1
1

p(h, ) s[ Zﬁthf} ME )

L(hi(x), f(x))

4 Approximate Distributions

This section discusses the case where instead of the true
distribution@; for sourcei, the learner has access only to
an approximatior);. This is a situation that can arise in
practice: a hypothesis is learned by training on a labeled
sample drawn fron®;, which is also used to derive a model

Q); for the distributionQ;. As before, we shall assume that
the average loss of each hypothekjsis at moste with
respect to the original distributio; and deal separately
with the cases of a known or unknown target distribution.

4.1 Known Target Distribution

We wish to proceed as in Section 3.1, where we deter-
mine the parametek that minimizes the divergence be-
tween P and a mixture of the source distributions. How-
ever, since here we are only given approximate source
distributions, we need to modify that approach as fol-
lows: (1) smce we only have access@@ we shall com-
pute a mixturex = argmin,, D, (P||Q) rather tham\ =
argmin, D, (P|Q), whereQ is the set of mixture distri-

butions over@i; (2) our hypothesis will be based (f@z
hu(z) =S8 %h-(@.

The following lemma relates the divergence of the individ-
ual distributions to that of the mixture.

Lemma 11 Leta> 1. Foranyu € A, the following holds:

Da(QM”@u) < m?x Da(Qi”@i)-

Proof: For a > 1 the functiong: (z,y) —
convex! Thus, we can write

xa/yafl iS

k
a— 1 i=1 LQZ x)]*
<ZZN’Z"O¢ 1 Zy‘ida ! Q\
< maxdi ™ (Qu1Q 1-). 0

The next lemma establishes a triangle inequality-like prop
erty with a slight increase of the parameter

Lemma 12 For any« > 1, the following inequality holds:
Da(P|Q) € Daa(P[Q) + Daa1(Q||Q).

Proof: By definition of the divergencéd, and by the

The convexity ofg follows from the semi-definite positive-
ness of the Hessian. It can be shown that it has one positie an
one zero eigenvalue.



Cauchy-Schwartz inequality, the following holds:

(x a—1/2
Z ZQ@ l/f Q _ (ZC)

Q(x 1 Q(x 1($)
P2a QQ@ 1 ZZ’
\/Z Q2a 1 \/Z QQQ 2 l‘
= 4,7 (PIQ) oo, (QIIQ).
Taking thelog yields

2" '(PIQ) =

(a=1)Da(P|Q) < (@=1)D2a-1(Q[Q)

and thus

(a—3)Daa(PIQ) +

- a— 1L -
Da(P|Q) € —2D2a(P|Q) + D2a-1(Q1Q)
< D3a(P|Q) + D2a—1(QIQ),

4.2 Unknown Target Distribution

In this section we address the case where the target distri-
bution P is unknown, as in Section 3.2. One main concep-
tual difficulty here is that we are given the distributiadns

but the assumption on the average loss of the hypothesis
holds for@;, not@;. Another issue is that we wish to give

a generalization bound that depends on the divergence be-
tweenP andQ, rather than the divergence betwerand

Q. The following theorem bounds the average loss with
respect to an arbitrary mixture of the approximate distribu
tions.

Theorem 14 Consider the multiple source adaptation set-
ting where the learner receives access to an approximate
distribution@; instead of the true distributio; of source

7. Then, for any > 0, there exists an approximate distribu-
tion weighted combination hypothesis

k

which completes proof of the lemma. [ | Qi) + (n/k)U(x)
ham =Y s hi(x),
We can now establish the main theorem of this section. The o i1 A Q@) + U (2)

bound presented depends only on the divergence betwe
P and Q (the mixtures of the true distributions) and the

divergence between the approximated distributi@mand
the true distributior);.

Theorem 13 Let A = argmin, D,(P|Q,) and 2 =
argmin, Do (P|Q,). Then,

Lp(hs, f) < €3, (P|Q M
~ 2 A~
max dy,, 1 (Qil| Q) maxdy (Qil| @),
wherey = &1,
Proof: By Lemma 1, we can write

L (hs, ) <1da(PIQ5)]" £y (h

5. (3, f) can be bounded by

;,f)Mé-

By convexity of L, £

Ea

da(QillQ] LY, (i, )M =

i M?r
F
g,
|/\

< EMw max(

«(QilQ0)",

Ylch that for any mixture distributio@#,

E@H(hA,naf) < [m?Xda(@iHQi) 6]%]\4% 45

Proof: Let ¢ denote the maximum average loés=
max; E@i (hi, ). By Theorem 4, for any > 0, there exists
a hypothesisg, , such thatlq, (hay, f) < €+ 6. Now,
by Lemma 1, for any € [1, k],

L, (hi, ) < [da(Qil|Qi)Laq, (hi, /)] = M3
Since by assumptiofig, (h;, f) < ¢, it follows that

Ls,(his f) < [da(@iHQi) 6}%1\4%,
forall i € [1,k]. Thus, by its definition¢ can be bounded
by [max; du (Q:]|Q;) €]“ M#, which proves the state-
ment of the theorem. |

The following corollary is a straightforward consequence
of the theorem.

Corollary 15 Consider the multiple source adaptation set-
ting where the learner receives access to an approximate
dlStI’Ibutloan instead of the true distributio®; of source

1. Then, for any > 0, there exists an approximate distribu-

where the first inequality uses Lemma 1, and the last on&0n weighted combination hypothesis

our assumption on the loss 6f. By definition of \, the
divergenceD,, (P||Q5) can be bounded by

Do(P||@Q5) < Doa(P[Qx) + Daa—1(QA]Qx)
< Do (P||@Q) + m?XDQchl(Qi”@i),

where the first inequality holds by Lemma 12 and the laswith € < [max;
one by Lemma 11. The theorem follows from combining

the inequalities just derived. |

a 2 Qi ()
2T A )
such that for any distributio®,

Lp(ham, f) < [da(P||Q)(E+0)) "+ M=,
da(Q;]|Qi)e] " M=, and
Dal(PQ) < Daa(PI|Q) + max Daa-1(QillQs).

h
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5 Multiple Target Functions

6 Experiments

This section examines the case where the target or labelinghis section presents an empirical evaluation of the distri

functions of the source domains are distinct.

Let f; denote the target function associated to sourfe
shall assume thad p(f;, f) < ¢ forali € [1, k], wheref

is the labeling function associated to the target donfain
Note that we require the source functigfygo be close to
the target functiorf only on the target distribution, and not
on the source distributiof);. Thus, we do not assume that
h; has a small loss with respect faon Q.

Here, we shall also assume that the loss function verifies thﬁnlform mixture off

triangle inequality L(g1,g3) < L(g1,92) + L(g2, g3) for

all g1, g2, g3, and is convex with respect to both arguments
i€, LY, pihiy Y2 pafi) < 325 paL(ha, fi), for all by, f;,
i€ [l,k],andu € A.

Theorem 16 Assume that the loss functidns convex and
obeys the triangle inequality. Then, for anye A, the
following holds:

ﬁp(h)\, f) <
a—1

[do (P Q)] M= + k9,

wherey =

Proof: Let fi(z) = Zle XiQi(z) fi(x)/Qx(x). Observe

that by convexity off_,
S > QZ DL (@), /(@)
=1 z
< Z 3 P@)[L(filx), f(x))] < kb.
=1 z

Thus, by the triangle inequality, and Lemma 1,

Lp(hx, f) < Lp(hx, f2) + Lp(fr, f)
< (da(PIQx)Lay (ha, £2)) M= + ks

k
= (da(PHQk) ; AiLq, (hi, J“‘i))vMé + k6

< (da(PlQx)€)" + k9,

where the third inequality follows from the convexity bf

and the last inequality holds by the bound assumed on th

expected loss of each source hypothésis [ |

bution weighted combination rule based on both artificial
and real-world data.

Artificial Data: Here, we created a two-
dimensional artificial dataset using four Gaus-
sians  distributions [g1, 92,95,94] with  means
[(1,1),(-1,1),(-1,-1),(1,—-1)] and unit variance.
The source distribution®, and Q- were generated from
the uniform mixture oflg1, g2, g5] @and|g1, g3, g4], respec-
tively, and the target distributioR was generated from the
g1, - - -, 94]. The labeling function was
defined asf(x1,x2) = sign(xi22). For training and test-
‘ing, we sampled,000 points from each distribution. Note
thatP = (g1 + ... + g4) cannot be constructed with any
mixture AQ1 + (1—=2)Q2 = 5(g1+Ag2 + g3+ (1= A)ga).
Also, note that the base hypotheses, when testedon
misclassify all the points that fall into at least one quadra
of the plane. However, with the use of a distribution
weighted combination rule, the appropriate base hypothe-
sis is selected depending on which quadrant a point falls
into, and this pitfall is avoided.

We used libsvm Http://www.csie.ntu.edu.tw/ cjlin/libsvrj/
with linear kernels to produce base classifiers. We re-
port the mean squared error (MSE) of the resulting (non-
thresholded) combination rules. The mean and standard
deviation reported are measured over 100 randomly gener-
ated datasets. Figure 1(a) shows that the curve plotting the
error as a function of the mixture parameiédnas the same
shape as the Réyni divergence curve, as predicted by our
bounds. Note that fok = 0 and\ = 1 we obtain the two
basic hypotheses.

Real-World Data: For the real-world experiments, we
used the sentiment analysis dataset of [4] also used in [12],
which consists of product review text and rating labels
taken from four different categoriebooks(B), dvds(D),
electronicy F) andkitchen-wareg K'). Using the method-
ology of [12], we defined a vocabulary 8f900 words that

fall into the intersection of all four domains and occur at
least twice. These words were then used to train a bigram
statistical language model for each domain using the GRM
Iébrary (http://www.research.att.com/ fsmtools/ginT he same
vocabulary was then used to encode each data point as a
3,900-dimensional vector containing the number of occur-

A similar bound can be given in the case where the lossences of each word.

verifies only a relaxed version of the triangle inequality (

inequality): L(g1,93) < B(L(g1,92) + L(g2,93)), for all
g1, g2, g3 for somes > 0.

Theorem 17 Assuming that the losk is convex and ver-

ifies thes-inequality, then for any\ € A, the following

bound holds:
Lp(ha, f) < B " M< + Bk,

[da(PlQx)e] =

In the same vein as the artificial setting, we defirdgd
and@- as the uniform mixture dfF, K, D] and[E, K, B],
respectively, and the target distributidghas the uniform
mixture of[E, K, D, B]. Each base hypothesis was trained
with 2,000 points using support vector regression (SVR)
[18], also implemented by libsvm, and the mixture was
evaluated on a test set 2666 points. The experiment was
repeated 00 times with random test/train splits. Although
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Figure 1:(a) Performance of the distribution weighted combinatiole for an artificial dataset, plotted as a function of the tomie
parameter\; comparison with the Réyni divergence plotted for the sparameter. (b) MSE of the distribution weighted combimatio
rule for the sentiment analysis dataset. (c) MSE of basethgges and distribution weighted combination. For eachmriie first two
bars indicate the MSE of the base hypotheses followed byottiae distribution weighted hypothesis. The base domaieew and
B with target domain mixturés/ F for group 1;E and B with targetK /D for group 2; andD and E with targetB/ K for group 3.

each base domain in this setting is relatively powerful, we [5] K. Crammer, M. Kearns, and J. Wortman. Learning from
still see a significant improvement when using the distribu- ~ multiple sourcesJMLR 9:1757-1774, 2008.

tion weighted combination, as shown in Figure 1(b). [6] H. Daumé Il and D. Marcu. Domain adaptation for statis-

| final set of . ¢ trained h of two b tical classifiers.Journal of Atrtificial Intelligence Research
n a final set of experiments, we trained each of two base 56101126, 2006.

hypotheses with ,000 points from a single domain. We .

then tested on a target that is a uniform mixture of the two [7] M. Dredze, J. Blitzer, P. P. Talukdar, K. Ganchev, J. @rac

other domains, consisting af000 points. Clearly, the tar- and F Pereira. Frustratingly Hard Domain Adaptation for

; > g P o Y, ; Parsing. INCoNLL, 2007.

getis not a mixture of the base domains. These experiments ) . . . o

were repeated00 times with random test/train splits. As [8] J.-L. Gauvain and Chin-Hui. Maximum a posteriori es-

shown in Figure 1(c), and as the caption explains in detail timation for multivariate gaussian mixture observatioiis o
LS 0 N o Markov chains. IEEE Transactions on Speech and Audio

the distribution weighted combination is capable of doing Processing2(2):291-298, 1994. P

significantly better than either base hypothesis.
9 y yp [9] F. Jelinek.Statistical Methods for Speech Recognitidine

MIT Press, 1998.

[10] J.Jiang and C. Zhai. Instance Weighting for Domain Adap
tation in NLP. InProceedings of ACL 20Qpages 264-271,

7 Conclusion

We presented a general analysis of the problem of multi-  Prague, Czech Republic, 2007.

ple SF’UF_Ce adaptat_ion_. Qur the_oretical and_em_pirical re[11] C. J. Legetter and P. C. Woodland. Maximum likelihoad li
SU|tS |nd|Cate that dlStI’IbUtIOﬂ WEIghted COmb'nat'On met ear regression for Speaker adaptation Of Continuous densit
ods can form effective solutions for this problem, incluglin hidden markov modelsComputer Speech and Language

for real-world applications. Our analysis of approximated pages 171-185, 1995.
distribution case and multiple labeling functions casép he [12] v. Mansour, M. Mohri, and A. Rostamizadeh. Domain adap-
cover other related adaptation problems arising in practic tation with multiple sources. INIPS 2008 20009.

The family of Rényi divergences naturally emerges in OUf13] A, M. Martinez. Recognizing imprecisely localizedarp

analysis as the “right” distance between distributionsis t tially occluded, and expression variant faces from a single
context. sample per classlEEE Trans. Pattern Anal. Mach. Intell.
24(6):748-763, 2002.
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