
Analysis of a Mixed-Use Urban WiFi Network:
When Metropolitan becomes Neapolitan

Mikhail Afanasyev, Tsuwei Chen†, Geoffrey M. Voelker, and Alex C. Snoeren

University of California, San Diego and †Google, Inc.
{mafanasyev,voelker,snoeren}@cs.ucsd.edu, tsuwei@google.com

ABSTRACT
While WiFi was initially designed as a local-area access net-
work, mesh networking technologies have led to increas-
ingly expansive deployments of WiFi networks. In urban en-
vironments, the WiFi mesh frequently supplements a num-
ber of existing access technologies, including wired broad-
band networks, 3G cellular, and commercial WiFi hotspots.
It is an open question what role city-wide WiFi deployments
play in the increasingly diverse access network spectrum. In
this paper, we study the usage of the Google WiFi network
deployed in Mountain View, California. We find that us-
age naturally falls into three classes, based almost entirely
on client device type. Moreover, each of these classes of
use has significant geographic locality, following the distri-
bution of residential, commercial, and transportation areas
of the city. Finally, we find a diverse set of mobility pat-
terns that map well to the archetypal use cases for traditional
access technologies.

1. INTRODUCTION
While WiFi was initially designed as a local-area access

network, mesh networking technologies have led to increas-
ingly expansive deployments of WiFi networks. Indeed,
a number of municipalities have deployed city-wide WiFi
networks over recent years. At the same time, the num-
ber and type of WiFi-capable devices have exploded due to
the increasing popularity of laptops and WiFi-capable smart-
phones like the Apple iPhone. Yet mesh WiFi networks are
far from the only networks such devices operate on. In ur-
ban environments, the WiFi mesh frequently supplements
a number of existing access technologies, including wired
broadband networks (cable, DSL, etc.), 3G cellular (EVDO,
EDGE, etc.), and commercial WiFi hotspots. It is an open
question what role city-wide WiFi deployments play in the
increasingly diverse access network spectrum.

In this paper, we study the usage of the Google WiFi net-
work, a freely available outdoor wireless Internet servicede-
ployed in Mountain View, California, and operational since
August 2006. The network consists of over 500 Tropos
MetroMesh pole-top access points and serves up to 2,500
simultaneous clients at a time. Using 27 days of overall net-
work statistics in Spring 2008, we analyze the temporal ac-

tivity of clients, the applications they use and their traffic de-
mands on the network, the mobility of users as they roam
through the city, and the diversity and coverage of users
spread geographically in the network.

We find that network usage uniquely blends the charac-
teristics of three distinctly different user populations into a
single metropolitan wireless network; we call such a hybrid
networkneapolitan.1 These user populations naturally fall
into three classes based almost entirely on client device type.
Local residents and businesses use it as a static WiFi mesh
access network, a substitute for DSL or cable modem ser-
vice. Laptop users have mobility and workload patterns rem-
iniscent of campus and other public hotspot WiFi networks.
And with a metropolitan WiFi network, smartphone users
combine the ubiquitous coverage of cellular networks with
the higher performance of wireless LANs. Each of these
classes of use has significant geographic locality, following
the distribution of residential, commercial, and transporta-
tion areas of the city. Finally, we find a diverse set of mo-
bility patterns that map well to the archetypal use cases for
traditional access technologies.

The remainder of this paper is organized as follows. We
begin by surveying related work in Section 2 before describ-
ing the architecture of the Google WiFi network and our
data collection methodology in Section 3. We analyze the
disparate network usage patters in Section 4 and then turn
our attention to client mobility in Section 5. Finally, Sec-
tion 6 considers the ramifications of observed usage on net-
work coverage and deployment, and Section 7 summarizes
our findings.

2. RELATED WORK
The Google WiFi network represents one of the latest

in various community, commercial, and rural efforts to use
commodity 802.11 hardware to construct mesh backbone
networks. Since 802.11 was not originally tailored for use in
a mesh, work in mesh network deployments has focused on
network architecture [5], MAC protocol development [18],
routing protocol design [6], and network planning and pro-
visioning [22], with measurement targeted to evaluating the
1Neapolitan ice cream consists of strawberry, chocolate, and
vanilla ice cream all packaged side-by-side.
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performance and reliability of the network itself [1]. Com-
munity and commercial mesh networks typically serve as
multi-hop transit between homes, businesses, and public lo-
cales and the Internet. Mobility is possible, but not neces-
sarily an intended feature; as such, network use tends to be
similar to use with DSL or cable modem service. Rural net-
works in developing regions typically supporttargeted ap-
plication services[19], such as audio and video conferencing
to provide remote medical treatment, and consequently have
application characteristics specific to their intended use. The
static access users in our study are similar to users of com-
munity and commercial backbone mesh networks. Their ap-
plication workloads and network utilization are most useful
as a point of comparison with the other two user populations
in our study; they only exhibit “mobility” to the extent to
which their AP associations flap over time.

The “campus” wireless LAN has been measured most ex-
tensively by the research community. Numerous studies of
indoor 802.11 networks have covered a variety of environ-
ments, including university departments [7, 8, 23], corporate
enterprises [4], and conference and professional meetings[3,
11, 12, 15, 17, 20]. These studies have focused on network
performance and reliability as well as user behavior from
the perspectives of low-level network characteristics to high-
level application use. With their more extensive geographic
coverage, larger-scale studies of outdoor 802.11 networkson
university campuses have provided further insight into mo-
bility and other user behavior [9, 10, 13, 16, 21, 25]. The
laptop user base in our study most closely resembles these
outdoor campus user populations, both in the dominant ap-
plications used and the relatively limited user mobility.

The dominant presence of iPhone users represents the
most interesting aspect of the Google WiFi user population.
WiFi smartphones represent an emerging market early in its
exponential adoption phase, yet it is the WiFi user popu-
lation that is the least well understood. Tang and Baker’s
detailed study of the Metricom metropolitan wireless net-
work [24] is most closely related to the smartphone popu-
lation of the Google WiFi network. Metricom operated a
Ricochet packet radio mesh network covering three major
metropolitan areas. The study covers nearly two months of
activity in the San Francisco Bay Area, and focuses on net-
work utilization and user mobility within the network. Pre-
sumably cellular providers measure cellular data character-
istics extensively, but these results are typically considered
confidential.

3. THE NETWORK
The Google WiFi network is a free, outdoor wireless In-

ternet service deployed in Mountain View, California. The
network has been continuously operational since August 16,
2006, and provides public access to anyone who signs up
for an account. The network is accessible using either tradi-
tional (SSID GoogleWiFi) and secure (WPA/802.1x, SSID
GoogleWiFiSecure) 802.11 clients. Aside from the standard

Figure 1: The Google WiFi coverage map.

prohibitions of SPAM, hacking, and other inappropriate ac-
tivities, Google does not limit the types of traffic that can
be transmitted over the network,2 however it does rate limit
individual clients to 1 Mb/sec.

3.1 Network structure
The network consists of over 500 Tropos MetroMesh

pole-top access points. Each Tropos node has a distinct
identifier and a well-known geographic location; Figure 1
shows the approximate location of the Tropos nodes. Each
Tropos node serves as an access point (AP) for client de-
vices, as well as a relay node in a wide-area backhaul mesh
that provides connectivity to the wired gateways. The topol-
ogy of the Tropos mesh network is constructed dynamically
through a proprietary Tropos routing algorithm. A pure
mesh network of this scale exhibits significant traffic con-
gestion at nodes close to the gateway router, however. To
alleviate the congestion, the Google WiFi network is hier-
archically clustered around approximately 70 point-to-point
radio uplinks that serve as a fixed long-haul backbone for the
mesh network.

Traffic is eventually routed to one of three distinct wired
gateways spread across the city, which then forward the traf-
fic to the main Google campus, where it is routed to a cen-

2The Google WiFi Terms of Service are available at
http://wifi.google.com/terms.html.
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Field Units
Acct-Status-Type Start/Interim-Update/Stop
NAS-Identifier Tropos ID string
Calling-Station-Id client MAC address
Acct-Session-Time seconds
Tropos-Layer2-Input-Octets (TLIO) bytes
Tropos-Layer2-Output-Octets (TLOO) bytes
Tropos-Layer2-Input-Frames (TLIF) frames
Tropos-Layer2-Output-Frames (TLOF) frames
Acct-Input-Octets (AIO) bytes
Acct-Output-Octets (AOO) bytes
Acct-Input-Packets (AIP) packets
Acct-Output-Packets (AOP) packets

Table 1: Partial contents of a RADIUS log record.

tralized authorization and authentication gateway. Google
provides single sign-on authentication and authorizationser-
vice, but, at the link layer, 802.11 client devices continueas-
sociate with each Tropos AP individually. All Tropos nodes
support the RADIUS accounting standard [14] and provide
periodic updates of client activity to the central server.

3.1.1 Access devices

To extend the network coverage indoors, Google recom-
mends the use of WiFimodems, or bridges, which are typ-
ically outfitted with more capable antennas than a standard
802.11 client. WiFi modems often provide a wired Ether-
net connection or serve as an in-home wireless AP, allow-
ing the connection of multiple physical machines. While
Google does not manufacture or sell WiFi modems, it has
recommended two particular WiFi modems to users of the
Mountain View network. In particular, Google suggests the
Peplink Surf and the Ruckus MetroFlex. Additionally, in
certain portions of the city, Google has deployed Meraki
Mini mesh repeaters to extend the reach of the Tropos mesh.

3.2 Data collection
In this study, we analyze a trace of 27 days of accounting

information collected by the central Google WiFi RADIUS
server during the Spring of 2008. Periodic updates are gen-
erated by all Tropos nodes for each associated client every
fifteen minutes. Tropos nodes issue additional updates when
clients first associate or disassociate (either explicitly—
which is rare—or through a 15-minute timeout). Table 1
shows the portion of the RADIUS log records that we use
for our study. For the purposes of this paper, we focus al-
most exclusively on layer-three information: we do not con-
sider the link layer behavior of the network. (Although we
do make occasional use of layer-two accounting information
as described below.)

Additionally, to facilitate our study the types of applica-
tion traffic in the network (Section 4.2.2), we obtained five
days worth of packet-header traces collected at the central
Internet gateway of the Google WiFi network. The header
trace contains only the first packets of each flow for the
first fifteen minutes of each hour. Because the trace was
collected at the gateway—as opposed to inside the wireless

mesh itself—we do not observe layer-two protocol traffic
such as ARP, nor many DHCP requests which are handled
by by the Tropos nodes themselves.

3.2.1 Data correction

During the course of our analysis, we discovered several
bugs in the Tropos accounting mechanism. In particular, a
number of fields are susceptible to roll-over, but such events
are easily detectable. More significantly, the Acct-Output-
Octets (AOO) field is occasionally corrupt, leading to spu-
rious traffic reports for roughly 30% of all client sessions.
Tropos confirms the bug, and informs us that the latest ver-
sion of the Tropos software fixes it. Unfortunately, our traces
were collected before the software update was applied.

Luckily, the layer-two traffic information reported by the
Tropos nodes appears accurate, so we are able to both detect
and correct for corrupt layer-three traffic information. We
detect invalid log records by comparing the number of layer-
two output octets (TLOO) to the layer-three count (AOO);
there should always be more layer-two octets than layer-
three due to link-layer headers and retransmissions. If we
discover instances where the layer-three value is larger than
layer two, we deem the layer-three information corrupt and
estimate it using layer-two information:

ÂOO =











AOO if AOO ≥ TLOO,

TLOO · (AOP/TLOF )

− (32 · AOP )
otherwise.

In other words, we scale the layer-two octet field based upon
the ratio of layer-two frames to layer-three packets to ac-
count for link-layer loss, and subtract off 32 bytes per packet
for link-layer headers.

3.2.2 Client identification

To preserve user privacy, we make no attempt to correlate
individual users with their identity through the Google au-
thentication service. Instead, we focus entirely on the client
access device and use MAC addresses to identify users.
Obviously, this approximation is not without its pitfalls—
we will incorrectly classify shared devices as being one
user, and are unable to correlate an individual user’s activity
across devices. While we speculate that a number of users
may access the Google WiFi network with multiple distinct
devices (a laptop and smartphone, for example), we consider
this a small concession in the name of privacy.

We have aggregated clients into groups based upon the
class of device they use to access the network. We clas-
sify devices based upon their manufacturer, which we de-
termine based upon their MAC addresses. In particular, we
use the first three octets, commonly known as the Organiza-
tionally Unique Identifier (OUI). Because many companies
manufacture devices using different OUIs, we have manu-
ally grouped OUIs from similar organizations (e.g., “Intel”
and “Intel Corp.”) into larger aggregates. Table 2 shows
some of the most popular OUI aggregates in our trace.
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Class Manufacturers Count
Smartphone Apple 15,450
(45%) Nokia 138

Research in Motion (RIM) 107
Modem Ruckus 525
(3%) PepLink 297

Ambit 224
Hotspot Intel 9,825
(52%) Hon Hai 1,931

Gemtek 1,735
Askey Computer Corp. 667
Asus 385

Table 2: A selection of manufacturers in the trace and
distinct client devices seen, grouped by device class. The
fraction of total devices in each class is in parentheses.

Apple bears particular note. While we have attempted to
determine which OUIs are used for iPhones as opposed to
other Apple devices (PowerBooks, MacBooks, iPod Touch,
etc.), we have observed several OUIs that are in use by both
laptops and iPhones. Hence, accurately de-aliasing these
OUI blocks would require tedious manual verification. For
the purposes of this paper we have lumped all Apple devices
together, and consider them all to be iPhones. Somewhat
surprisingly, this appears to be a reasonable approximation.
In particular, we estimate that 88% of all Apple devices in
our trace are iPhones.

In order to estimate the population of iPhone devices, we
leverage the fact that Apple products periodically check for
software updates by polling a central server,wu.apple.
com. iPhones in particular, however, polliphone-wu.
apple.com, which is a CNAME forwu.apple.com.
Hence, if one considers the DNS responses destined to an
iPhone device polling for software updates, it will receivere-
sponses corresponding to bothiphone-wu.apple.com
andwu.apple.com (either because the DNS server proac-
tively sent thewu.apple.com A record, or the client sub-
sequently requested it). Other Apple devices, on the other
hand, will only receive an A record forwu.apple.com.
We compare the total number of DNS responses destined
to clients with Apple OUIs foriphone-wu.apple.com
to those forwu.apple.com present in our packet header
traces, and determine that the Gateway sees 1.13 times as
many responses forwu.apple.com. We therefore that
conclude 88% of thewu.apple.com responses actually
resulted from queries foriphone-wu.apple.com.

iPhones constitute the vast majority of all devices we have
classified into thesmartphonegroup, although we see sev-
eral other manufacturers, including Research in Motion—
makers of the Blackberry family of devices—and Nokia in
the trace. As discussed previously, Ruckus and PepLink are
two brands of WiFi modems that Google recommended for
use in their network. Moreover, neither company appears to
manufacture other classes of WiFi devices in any large num-
ber. Hence, for the remainder of the paper we have com-
bined Ruckus and PepLink OUIs into a larger class that we
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Figure 3: Average daily use of the Google WiFi network.

term modem. (We also include Ambit, whose only WiFi-
capable devices appear to be cable modems.) Finally, for
lack of a better term, we classify the remaining devices as
hotspotusers. While it is extremely likely that some por-
tion of these devices are mis-classified (i.e., some modem
and smartphone devices are likely lumped in with hotspot
devices) the general trends displayed by the hotspot users
are dominated by Intel, Hon Hai, and Gemtek, manufac-
tures well known to produce a significant fraction of the in-
tegrated laptop WiFi chip-sets. (Notably, Hon Hai manufac-
tures WiFi chip-sets used in the Thinkpad line of laptops.)

4. USAGE
In this section we analyze when various classes of clients

are active in the Google WiFi network, and then characterize
the application workload these clients place on the network.

4.1 Activity
We begin by looking at overall aggregate network activ-

ity. Figure 2 shows the number of active clients using the
network (lefty-axis) and their average activity time (right
y-axis) per fifteen-minute interval for the entire trace. In
our analyses, we consider a client to beactive for a fifteen
minute reporting interval if it sends at least one packet per
second during the interval. If a client sends fewer pack-
ets, we deem it to be active for a prorated portion of the
interval—i.e., a client that sends at least 54,000 packets is
deemed active for the entire interval, while a client that sends
18,000 packets is said to be active for 5 of the 15 minutes.
We choose this metric in an attempt to reduce the contribu-
tion of devices that are simply on but likely not being used,
as such devices still tend to engage in a moderate rate of
chatter [2]. We calculate activity time as the average number
of seconds each client was active during the hour.

The results show that the Google WiFi network has a sub-
stantial daily user population, peaking around 2,500 simulta-
neous users in any 15-minute interval. The curves also show
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Figure 2: Usage of the Google WiFi network for the duration ofthe trace, measured in 15-minute intervals.

the typical daily variation seen in network client traces, with
peaks in both users and activity during the day roughly twice
the troughs early in the morning. Weekend use is lower than
on weekdays, with roughly 15% fewer users during peak
times on the weekends. When users are connected, they
are active for only a small fraction of time. On an hourly
basis, users are active only between 40–80 seconds (1–2%)
on average.

Figure 3 shows the daily variation of aggregate network
behavior in more detail. The figure has four curves, two
showing the number of clients (lefty-axis) and two show-
ing average hourly client activity (righty-axis) on a typical
weekday and weekend day. At the scale of a single day, vari-
ations over time in the number of clients and their activity
become much more apparent. For example, there are mul-
tiple distinct peaks in clients on the weekday during morn-
ing rush hour (9 am), lunch time (12:30 pm), and the end
of evening rush hour ( 6pm); weekends, however, are much
smoother. Further, the largest peaks for the number of clients
and activity are offset by four hours. The number of clients
peaks at 6 pm at the end of rush hour, but activity peaks at
10 pm late in the evening. This behavior is due to a combi-
nation of the kinds of clients who are using the network and
how they use it.

Figure 4(a) similarly shows the daily variation of client
usage on weekdays as in Figure 3, but separates clients by
the type of device they use to access the network. The
graph shows three curves corresponding to the number of
active modem, smartphone, and hotspot clients each hour.
Separated by device type, we see that the different types of
clients have dramatically different usage profiles. The num-
ber of modem clients is constant throughout the day. This
usage suggests homes and businesses with potentially sev-
eral computers powered on all day, with “chatty” operating
systems and applications providing sufficient network traffic
to keep the wireless access devices constantly active (analy-
ses of network traffic in Section 4.2 shows that these users do
have substantial variation in traffic over time). Hotspot users

show more typical diurnal activity, with peak usage in late
afternoon twice the trough early in the morning. Hotspot
user activity is also high for more than half the day, from
9am until 11pm at night.

Smartphone users show the most interesting variation over
time. The curve shows three distinct peaks during the day (9
am, 1 pm, and 6 pm), suggesting that smartphone usage is
highly correlated with commute and travel times and that
the devices are active while users are mobile (Section 5 ex-
plores mobility behavior further). Further, smartphone us-
age is much more heavily concentrated during the day. Peak
client usage at 6 pm is four times the trough at 5 am in
the morning. There are a number of possible explanations
for this behavior. One is that the majority of smartphone
users are commuters, and therefore are only within range of
the network during the day. Another is that, although they
may make voice calls, users do not access WiFi during the
evening, perhaps preferring to access the Internet with lap-
tops or desktops when at home. The period of high activity
is slightly shorter than hotspot users (9 am to 8 pm).

Figure 4(b) similarly shows the number of active clients
by device type as Figure 3, but for a typical day on the week-
end. Comparing weekdays with the weekend, we see little
difference for modem and hotspot users. Modem users re-
main constant, and, although there are fewer hotspots users
during the highly active period than on the weekday, the
period of high activity remains similar. Smartphone users,
however, again exhibit the most notable differences. Smart-
phone peak usage no longer correlates with commute times,
peaking at midday (1pm) and diminishing steadily both be-
fore and after.

4.2 Traffic
The results above show how many and when clients are

active. Next we characterize the amount of traffic active
clients generate.

Figure 5 plots the CDF of total amount of data transferred
(the sum of upload and download) by clients of each class
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Figure 4: Hourly usage of the Google WiFi network, broken down by day of the week.
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Figure 5: Total bytes transferred (in and out) by each
client per day. (Note the log-scalex axis.)

per day. Only active clients are included; if a client did not
connect at all during a day, that data point was not included
in the graph.

Figure 6 shows the distribution of transfer rates for 15-
minute intervals when the clients were active for the entire
trace period. In other words, if a client sends less than one
packet per second during an interval, that interval is not in-
cluded. The graph shows three curves for each of the three
user populations. Recall that Google limits transfer ratesto
1 Mb/sec per client, or approximately 128 KB/sec. Very few
active periods approach this limit, though, so it has very little
impact on extended traffic demands by users.

The transfer rates vary substantially among the different
populations. The median rates in active periods are 3 KB/sec
for modem users, 512 bytes/sec for hotspot users, and 128
bytes/sec for smartphone users. Note that the very low trans-
fer rates in bytes/sec are an artifact of the measurement in-
frastructure. The trace records have a granularity of 15 min-
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Figure 6: Instantaneous transmission rates during activ-
ity periods, broken up by client type.

utes, so low transfer rates reflect short activity averaged over
a relatively long time interval. Modem activity has the over-
all highest transmission rates: the bulk of of active periods
(80%) transmit at 256 bytes/sec or higher, and 20% at 8
KB/sec. Hotspot activity is roughly uniformly distributed
across the range: over 80% of hotspot transfer rates are uni-
formly between 64 bytes/sec and 8 KB/sec, with tails at ei-
ther extreme. Smartphone activity falls into three regions.
Much of smartphone activity exhibit very low rates (40%
less than 96 bytes/sec), the next 40% of activity is linear
between 96 bytes/sec and 768 bytes/sec, and the remaining
20% have higher rates.

4.2.1 Sessions

Next we characterize how long clients are active when as-
sociated with the network. We observed up to 379 distinct
sessions per client, with the median client connecting only
twice and a full 35% appearing only once. Almost 7% of
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client was active.

clients connected at least once per day, on average, and more
than 10% connected at least once per weekday (20 times).

Figure 7 shows the distribution of session lengths during
our trace for the different client populations. We define a
client session as the period of time between 802.11 asso-
ciation and disassociation with an access point. Clients in
the different user populations also exhibit different session
length distributions. A significant fraction of modem clients
have sessions that span the entire trace; although 65% of
those sessions are shorter than a day, these shorter sessions
are due to oscillations between access points (see Section 5).
Many hotspot clients have sessions shorter than an hour: the
median hotspot session length is 30 minutes. But a substan-
tial fraction are rather long, with 30% of the sessions longer
than two hours. Smartphone clients have the shortest session
lengths. Over half of the sessions are less than 10 minutes,
and only 10% are longer than an hour.

Just because clients are associated with the network does
not necessarily mean that they are active during the entire

session. Figure 8 shows what fraction of their sessions
the clients were actually active. Not only do smartphone
users have short sessions, their session activity is quite low.
For over half of smartphone sessions, clients are active for
less than 10% of the time. This low activity suggests that
users have their phones and WiFi turned on when in the net-
work, but use Internet applications only infrequently. Mo-
dem clients are much more active during their sessions. Over
40% of their sessions are active at least half the time. Fi-
nally, hotspot clients are the most active when connected to
the network; the median session is active almost 75% of the
time. This activity suggests that hotspot users connect to the
network with the intention to use it, and disconnect when
finished.

4.2.2 Application classes

It is natural to ask what types of traffic the Google WiFi
network carries. Using a five-day packet header trace span-
ning a weekend during our larger trace, we classify the first
packets of each flow based on protocol and port numbers.
Figure 9(a) plots the number of connections for each traffic
class as a function of the time of day. While our port-based
traffic classification mechanism is imperfect, it is clear that
peer-to-peer connections constitute a significant fraction of
the network use. (While most of the traffic is BitTorrent,
we see a remarkable amount of “Thunder” traffic, a Chinese
peer-to-peer protocol also known as Xunlei, which operates
on UDP port 15000.) Interestingly, peer-to-peer usage ap-
pears to be relatively time insensitive, which is consistent
with users that leave their file sharing clients on almost all
the time.

Web traffic is significantly more diurnal, seeing a signif-
icant dip in the early morning hours, and peaking in the
evenings. Perhaps most unusual feature is the dramatic vari-
ation in the frequency of management (ICMP, DHCP, and
DNS) connections. It turns out that the vast majority of this
traffic is is actually mDNS “dnsbugtest” traffic. In fact, Fig-
ure 10(a) shows that almost all of it stems from a few partic-
ular modem devices.

The other two main connection contributors, other TCP
and non-TCP show less significant—but still apparent—
diurnal trends. We group SSH, telnet, X windows, and sim-
ilar remote log-in protocols into an interactive class ; per-
haps not surprisingly they represent a consistently negligible
fraction of the total connections. Finally, we observe very
few VPN connections, despite the fact that Google promotes
Google Secure Access, a free VPN provided by Google for
use on the Google WiFI network, although they turn out to
be relatively heavy.

The picture for bytes is similar. Figure 9(b) plots the to-
tal amount of data transferred in the network as a function
of hour of the day. HTTP and other TCP traffic clearly rep-
resent the lion’s share of the traffic. We suspect that other
TCP is largely peer-to-peer traffic that we failed to properly
classify. Identified peer-to-peer traffic forms the next tier of
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Figure 9: Hourly usage of the network per application class.

usage, along with non-TCP traffic which we suspect repre-
sents VoIP and other multimedia transfers. The log-scaley
axis provides a better view on the interactive and VPN traf-
fic, which shows a subtle diurnal trend. Finally, we see that
management flows, while frequent, constitute a very small
fraction of the total traffic in terms of total bytes transferred.

Figure 10 breaks down each of the two preceding graphs
by client type. To do so, we build a mapping between the
client MAC addresses and assigned IP addresses in the RA-
DIUS logs, and then classify the traffic logs by IP address.
Not surprisingly, the three device types show markedly dif-
ferent application usage. Smartphones, in particular, gen-
erate very few connections, and almost all their bytes are
Web or other TCP applications. We surmise that the bulk
of the other traffic is made up by streaming media (e.g.,
UPnP-based iPhone video players) and VoIP traffic, but fur-
ther analysis is required.

The distinctions between modem and hotspot users are far
more subtle. It is worth noting however, that there are an or-
der of magnitude more hotspot users than modem users, yet
the modem users place similar aggregate traffic usage de-
mands on the network. Both modem and hotspot users show
a significant amount of peer-to-peer, Web, and non-TCP traf-
fic. Of note, the modem P2P users appear to receive much
higher per-connection bandwidth than the Hotspot users,
which is consistent with our observations about the instan-
taneous bandwidth achieved by each client type (c.f., Fig-
ure 6). Hotspot users are significantly more likely to use
interactive remote login applications than modem users, but
we have not attempted to determine why that may be.

Finally, we observe that almost all the connection vol-
ume in the management class stems from modem clients—
Ruckus devices in particular. While many devices in our
trace periodically issue “dnsbugtest” mDNS requests, some
Ruckus devices issue thousands of queries during each 15-
minute interval. The precise cause of this behavior deserves
further investigation.
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Figure 11: CDF of the number of oscillations per hour (x
axis is log scale).

5. MOBILITY
We now turn to questions of client mobility; in particular,

we study how frequently, fast, and far hosts move. Because
clients do not report their geographical location, we use the
location of the AP to which they associate as a proxy for
their current location. The Google WiFi network has vary-
ing density, but APs are approximately 100 meters apart on
average. While that provides an effective upper bound on
the resolution of our location data, it is possible that clients
may associate to APs other than the physically closest one
due to variations in signal propagation.

5.1 Oscillations
Moreover, signal strength is a time varying process, even

for fixed clients. To gain an appreciation for the degree of
fluctuation in the network, we consider the number of oscil-
lations in AP associations. To do so, we record the last three
distinct APs to which a client has associated. If a new asso-
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Figure 10: Number of connections (a–c) and bytes (c–e) per hour for each device type.

ciation is to one of the previous three most recent APs, we
consider it an oscillation. Using this definition, we detecta
high frequency of oscillations in the data.

Figure 11 plots the number of oscillations per hour for
each client type. Overall, we see that 50% of clients oscil-
late at least once an hour, and individual clients oscillateas
frequently as 2900 times an hour (almost once a second).
The rate of oscillation varies between client types, with
modems exhibiting the lowest rate of oscillation—likely
because they are physically fixed, and oscillate only due
to environmentally induced signal strength variation—and
smartphones the highest, although the extreme tail is heav-
iest for hotspot users. To more accurately capture physical
movement—as distinct from RF movement due to changes
in signal strength—we eliminate oscillations from the asso-
ciation data used in the remainder of this section.

5.2 Movement
We plot the number of distinct APs to which a client asso-

ciates during the course of our trace in Figure 12. Roughly
35% of all devices associate with only one AP; this corre-
sponds well to the fraction of clients that appear only once
in the trace (c.f. Section 4.2.1). As one might expect, each
client class exhibits markedly different association behavior.
Modems tend to associate with a very few number of APs—
likely nearby to a single physical location. Smartphones, on
the other hand, frequently associate with a large number of
APs; 50% of smartphones associate with at least six distinct
APs, and the most wide-ranging of 10% smartphones asso-
ciate with over 32 APs. Hotspot clients, on the other hand,
are significantly less mobile—the 90% percentile associates
with less than 16 APs during the four-week trace. We ob-
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Figure 12: CDF of the number of distinct APs a client
associates with over the course of the trace.

serve, however, that both the smartphone and hotspot pop-
ulations are skewed by a significant number of clients that
appear only once in the entire trace.

If we restrict the time window to a day—as opposed to
28 days as above—he distribution shifts considerably (not
shown): 90% of all clients connect to at most eight APs per
day on average, with only a handful of clients connecting to
more than 16 APs. A fully 90% of modems, 70% of hotspot
users, and 40% of smartphones connect to only one AP per
day on average.

Next, we consider how geographically disperse these APs
are. In particular, we study the distance traveled between
consecutive associations by a single client. Figure 13 plots
the average distance in meters between non-oscillatory client
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Figure 13: CDF of the average distance between consec-
utive client associations.

associations. Not surprisingly, very few devices associate
with APs less than 100 meters apart, as there are few lo-
cations in the city with closely spaced APs (the library is
a notable exception). At the other extreme, we see devices
that travel over six miles between associations—roughly the
maximum distance between APs in the network.

It is frequently possible to connect to a number of different
APs from one physical location. If we assume that modem
devices move infrequently (most are likely installed in users’
homes), we can infer that the Google WiFi signal travels at
most 500 meters from an AP. Moreover, by considering the
number of APs modems associate to in Figure 12, we con-
clude that most locations in the city (where WiFi modems
are installed) can reach at most four APs.

While smartphones appear to travel further than hotspot
clients on average, both show significant range. The me-
dian smartphone travels well over half a mile (approximately
1050 meters) between associations, compared to a quarter
mile for hotspot clients. The 90-th percentile smartphone
travels just slightly farther—1200 meters—than the median,
while hotspot usage is more varied: the 90-th percentile user
travels almost three times as far as the median.

Finally, in order to understand how fast clients are mov-
ing, we plot the pause time between associations in Fig-
ure 14. Interestingly, we note that smartphones rarely re-
associate in less than thirty seconds, but usually within two
minutes. In contrast, a significant fraction of modems go
very long periods without re-associating (likely because the
remain constantly attached to the same AP). The majority
of hotspot users, on the other hand, re-associate between ten
seconds and one minute after their last association.

If one considers a scatter plot of AP distance as a function
of pause time (not shown), there is high density along the
y axis (instantaneous reassociation) until about 750 meters,
with a (comforting) void delineated by roughly the 75 mph
line. Symmetrically, we see a significant portion of users that
reassociate roughly 200 meters away over all time scales,
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Figure 14: CDF of pause time for each class of client.

indicating varying rates of travel between adjacent APs. The
graph is significantly less dense in the regions slower than
five minutes and further than 500 meters, however.

6. COVERAGE
So far, we have considered characteristics of the users of

the network. In this section, we turn our attention the net-
work itself and ask two distinct questions. First, we consider
whether the network is utilized differently in different parts
of the city. Secondly, we ask to what extent the full coverage
of the network is necessary—in other words, is it possible
to deactivate certain APs from time to time and preserve the
overall user experience.

6.1 Diversity
The usage of the Google WiFi network varies based on

physical location. Table 3 considers three disjoint regions of
the city—one residential, one commercial, and one simply a
thruway (Highway 101) at four distinct periods throughout
the day: 5–6 am, 9–10am, 3–4pm, and 6–7 pm correspond-
ing to the peaks and valleys of Figure 3. For each time pe-
riod and region, we show the number of clients, activity time
across those users, and total bytes transferred. To facilitate
comparison across time periods and areas, yet preserve the
privacy of users in these select geographic areas, we normal-
ize the histograms for each particular value (bytes, activity,
and users) to the average for that value over all classes of
clients and time periods—in other words, the sum of all the
histograms for a particular value is thirty six.

We see significant differences between the network use
across the geographic areas. Not only does the proportion
of modem, smartphone, and hotspot users vary across loca-
tions, but the usage patterns within these user classes also
differs substantially. For example, we see far more smart-
phones in the transit area surrounding Highway 101 than
any other type of device, but the smartphones show almost
no usage. Indeed, the few hotspot users we do see transfer
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Transit Commercial Residential

5–6am
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot

Bytes
Activity
Users

 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot

9–10 am
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3
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 5

Modem Smartphone Hotspot

3–4 pm
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot

6–7 pm
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot
 0

 1

 2

 3

 4

 5

Modem Smartphone Hotspot

Table 3: Network usage for representative time periods across different parts of the city.
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Figure 15: Effect of removing Tropos access points on
total network activity time.

more data cumulatively than the smartphones. In contrast,
smartphones are far less prevalent in the residential area,ap-
pearing in similar numbers to hotspot users. However, those
we do observe are substantially more active than those in the
transit area. Not surprisingly, modem users represent a sig-
nificant fraction of the residential usage, at least in termsof
traffic and activity if not in total number. Moreover, their
usage appears less time dependent than the other devices.

The commercial area is the most active, with significant
usage across all three classes of clients. Modem activity
is similar to that in residential areas, but the absolute num-
ber of both smartphones and hotspot users is significantly
higher. Mobile (i.e., smartphone and hotspot) usage peaks in
the commercial area in the middle of the afternoon (hotspot
usage is off scale, with a normalized byte count of 6.2 and
user count of 5.4), yet remains strong across all periods, un-
like the other two, which show far less usage in the early
morning hours. Unsurprisingly, the number of clients in the
transit area peaks during rush hours, while residential usage
is highest during the evening (not shown).

6.2 Concentration
For a metropolitan network covering an entire city, an in-

teresting deployment question is to what extent the full setof
nodes in the network are actively being used. As a final ex-
periment, we calculated the total activity time for each pole
top Tropos node. We then sorted the nodes in increasing ac-
tivity time, with the least active node first. Starting with all
of the nodes, we then successively removed nodes in sorted
order. At each step, we calculated the fraction of activity
time contributed by all of the nodes together — the first step
corresponds to the activity of all of the nodes, the second to
all nodes minus the least active node, etc.

Figure 15 shows the distribution of activity time for this
experiment. Thex-axis shows the number of access points
removed (in sorted order of increasing activity time). The
y-axis shows the fraction of all activity time a given set of

nodes contribute. Somewhat surprisingly, we do not find a
heavy tail to the curve, indicating that all nodes are relatively
active and contribute to useful network coverage throughout
Mountain View.

7. CONCLUSION
In this paper, we study the usage of the Google WiFi net-

work, a freely available outdoor wireless Internet service
deployed in Mountain View, California. We find that the
aggregate usage of the Google WiFi network is composed
of three distinct user populations, characterized by distinct
traffic, mobility, and usage patterns that are characteristic of
traditional wireline, wide-area, and localized wireless access
networks. Modem users are static and always connected, and
place the highest demand on the network. Hotspot users are
concentrated in commercial and public areas, and have mod-
erate mobility. Smartphone users are surprisingly numerous,
have peak activity strongly correlated with commute times
and are concentrated along travel corridors, yet place very
low demands on the network.
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