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Abstract
Load balancing is a critical issue for the efficient oper-
ation of peer-to-peer networks. We give two new load-
balancing protocols whose provable performance guar-
antees are within a constant factor of optimal. Our proto-
cols refine theconsistent hashingdata structure that un-
derlies the Chord (and Koorde) P2P network. Both pre-
serve Chord’s logarithmic query time and near-optimal
data migration cost.

Our first protocol balances the distribution ofthe key
address spaceto nodes, which yields a load-balanced
system when the DHT maps items “randomly” into the
address space. To our knowledge, this yields the first
P2P scheme simultaneously achievingO(logn) degree,
O(logn) look-up cost, and constant-factor load balance
(previous schemes settled for any two of the three).

Our second protocol aims to directly balance the dis-
tribution of itemsamong the nodes. This is useful when
the distribution of items in the address space cannot be
randomized—for example, if we wish to support range-
searches on “ordered” keys. We give a simple protocol
that balances load by moving nodes to arbitrary locations
“where they are needed.” As an application, we use the
last protocol to give an optimal implementation of a dis-
tributed data structure for range searches on ordered data.

1 Introduction

A core problem in peer to peer systems is the distribu-
tion of items to be stored or computations to be car-
ried out to the nodes that make up the system. A par-
ticular paradigm for such allocation, known as thedis-
tributed hash table (DHT), has become the standard ap-
proach to this problem in research on peer-to-peer sys-
tems [KK03, MNR02, RFH+01, SMK+01].

An important issue in DHTs is load-balance — the
even distribution of items (or other load measures) to

nodes in the DHT. All DHTs make some effort to load-
balance, generally by (i) randomizing the DHT address
associated with each item with a “good enough” hash
function and (ii) making each DHT node responsible for
a balanced portion of the DHT address space. Chord is
a prototypical example of this approach: its “random”
hashing of nodes to a ring means that each node is re-
sponsible for only a small interval of the ring address
space, while the random mapping of items means that
only a limited number of items land in the (small) ring
interval owned by any node.

This attempt to load-balance can fail in two ways.
First, the typical “random” partition of the address space
among nodes is not completely balanced. Some nodes
end up with a larger portion of the addresses and thus re-
ceive a larger portion of the randomly distributed items.
Second, some applications may preclude the randomiza-
tion of data items’ addresses. For example, to support
range searching in a database application the items may
need to be placed in a specific order, or even at specific
addresses, on the ring. In such cases, we may find the
items unevenly distributed in address space, meaning that
balancing the address space among nodes is not adequate
to balance the distribution of items among nodes. We
give protocols to solve both of the load balancing chal-
lenges just described.

Address-Space Balancing. Current distributed hash
tables donot evenly partition the address space into
which keys get mapped; some machines get a larger por-
tion of it. Thus, even if keys are numerous and random,
some machines receive more than their fair share, by as
much as a factor ofO(logn) times the average.

To cope with this problem, many DHTs usevirtual
nodes: each real machine pretends to be several distinct
machines, each participating independently in the DHT
protocol. The machine’s load is thus determined by sum-
ming over several virtual nodes’, creating a tight con-
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centration of (total) load near the average. As an ex-
ample, the Chord DHT is based upon consistent hashing
[KLL +97], which requiresO(logn) virtual copies to be
operated for every node.

Virtual nodes have drawbacks. Besides increased stor-
age requirements, they demand network bandwidth. In
general, to maintain connectivity of the network, every
(virtual) node must frequently ping its neighbors, make
sure they are still alive, and replace them with new neigh-
bors if not. Running multiple virtual nodes creates a mul-
tiplicative increase in the (very valuable) network band-
width consumed for maintenance.

Below, we will solve this problem by arranging for
each node to activateonly oneof its O(logn) virtual
nodes at any given time. The node will occasionally
check its inactive virtual nodes, and may migrate to one
of them if the distribution of load in the system has
changed. Since only one virtual node is active, the real
node need not pay the original Chord protocol’s multi-
plicative increase in space and bandwidth costs. As in
the original Chord protocol, our scheme gives each real
node only a small number of “legitimate” addresses on
the Chord ring, preserving Chord’s (limited) protection
against address spoofing by malicious nodes trying to dis-
rupt the routing layer. (If each node could choose an ar-
bitrary address, then a malicious node aiming to erase a
particular item could take responsibility for that item’s
key and then refuse to serve the item.)

Another nice property of this protocol is that the “ap-
propriate” state of the system (i.e., which virtual nodes
are active), although random, isindependentof the his-
tory of item and node arrivals and departures. This
Markovian property means that the system can be ana-
lyzed as if it were static, with a fixed set of nodes and
items; such analysis is generally much simpler than a dy-
namic, history-dependent analysis.

Combining our load-balancing scheme with the Ko-
orde routing protocol [KK03], we get a protocol that si-
multaneously offers (i)O(logn) degree per real node, (ii)
O(logn/ log logn) lookup hops, and (iii) constant factor
load balance. Previous protocols could achieve any two
of these but not all 3—generally speaking, achieving (iii)
required operatingO(logn) virtual nodes, which pushed
the degree toO(log2n) and failed to achieve (i).

Item Balancing. A second load-balancing problem
arises from certain database applications. A hash table
randomizes the order of keys. This is problematic in

domains for which order matters—for example, if one
wishes to perform range searches over the data. This
is one of the reasons binary trees are useful despite the
faster lookup performance of hash tables. An order-
preserving dictionary structure cannot apply a random-
ized (and therefore load balancing) hash function to its
keys; it must take them as they are. Thus, even if the
address space is evenly distributed among the nodes, an
uneven distribution of the keys (e.g., all keys near 0) may
lead to all load being placed on one machine.

In our work, we develop a load balancing solution for
this problem. Unfortunately, the “limited assignments”
approach discussed for key-space load balancing does
not work in this case—it is easy to prove that if nodes
can only choose from a few addresses, then certain load
balancing tasks are beyond them. Our solution to this
problem therefore allows nodes to move to arbitrary ad-
dresses; with this freedom we show that we can load-
balance an arbitrary distribution of items, without ex-
pending much cost in maintaining the load balance.

Our scheme works through a kind of “work stealing”
in which underloaded nodes migrate to portions of the
address space occupied by too many items. The proto-
col is simple and practical, with all the complexity in its
performance analysis.

Preliminaries. We design our solutions in the context
of the Chord DHT [SMK+01] but our ideas seem appli-
cable to a broader range of DHT solutions. Chord uses
Consistent Hashing to assign items to nodes, achieving
key-space load balance usingO(logn) virtual nodes per
real node. On top of Consistent Hashing, Chord layers
a routing protocol in which each node maintains a set of
O(logn) carefully chosen “neighbors” that it uses to route
lookups inO(logn) hops. Our modifications of Chord are
essentially modifications of the Consistent Hashing pro-
tocol assigning items to nodes; we can inherit unchanged
Chord’s neighbor structure and routing protocol. Thus,
for the remainder of this paper, we ignore issues of rout-
ing and focus on the address assignment problem.

In this paper, we will use the following notation.
n = number of nodes in system
N = number of items stored in system (usuallyN� n)
`i = number of items stored at nodei
L = N/n = average (desired) load in the system

As discussed above, Chord maps items and nodes to a
ring. We represent this space by the unit interval[0,1)
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with the addresses 0 and 1 are identified, so all addresses
are a number between 0 and 1.

2 Address-Space Balancing

We will now give a protocol that improves consistent
hashing in that every node is responsible for aO(1/n)
fraction of the address space with high probability (whp),
without use of virtual nodes. This improves space and
bandwidth usage by a logarithmic factor over traditional
consistent hashing. The protocol is dynamic, with an
insertion or deletion causingO(log logn) other nodes
to change their positions. Each node has a fixed set
of O(logn) possible positions (called “virtual nodes”);
it chooses exactly one of those virtual nodes to be-
comeactive at any time—this is the only node that it
actually operates. A node’s set of virtual nodes de-
pends only on the node itself (computed e.g. as hashes
h(i,1),h(i,2), . . . ,h(i,clogn) of the node-idi), making
malicious attacks on the network difficult.

We denote the address(2b+1)2−a by 〈a,b〉, wherea
and b are integers satisfying 0≤ a and 0≤ b < 2a−1.
This yields an unambiguous notation for all addresses
with finite binary representation. We impose an order-
ing≺ on these addresses according to thelengthof their
binary representation (breaking ties by magnitude of the
address). More formally, we set〈a,b〉 ≺ 〈a′,b′〉 iff a< a′

or (a= a′ andb< b′). This yields the following ordering:

0 = 1≺ 1
2
≺ 1

4
≺ 3

4
≺ 1

8
≺ 3

8
≺ 5

8
≺ 7

8
≺ 1

16
≺ . . .

We describe our protocol in terms of an ideal “locally
optimal” state it wants to achieve.

Ideal state: Given any set of active virtual nodes, each
(possibly inactive) virtual node “spans” a certain
range of addresses between itself and the succeed-
ing active virtual node. Each real node has activated
the virtual node that spans the minimal possible (un-
der the ordering just defined) address.

Note that the address space spanned by one virtual node
depends on which other virtual nodes are active; that is
why the above is a local optimality condition. Our pro-
tocol consists of the simple update rule that any node for
which the local optimality condition is not satisfied, in-
stead activates the virtual node that satisfies the condi-
tion. In other words, each node occasionally determines

which of itsO(logn) virtual nodes spans the smallest ad-
dress (according to≺), and activates that particular vir-
tual node. Note that computing the “succeeding active
node” for each of the virtual nodes can be done using
standard Chord lookups.

Theorem 1 The following statements are true for the
above protocol, if every node has clogn virtual ad-
dresses.

(i) For any set of nodes there is a unique ideal state.

(ii) Given any starting state, the local improvements
will eventually lead to this ideal state.

(iii) In the ideal state of a network of n nodes, whp all
neighboring pairs of nodes will be at most(2+ε)/n
apart, where c≥ 1/ε2.

(iv) Upon inserting or deleting a node into an ideal
state, in expectation at most O(log logn) nodes have
to change their addresses for the system to again
reach the ideal state.

Proof Sketch: The unique ideal state can be constructed
as follows. The virtual node immediately preceding ad-
dress 1 will be active, since its real-node owner has no
better choice and cannot be blocked by any other active
node from spanning address 1. That real node’s other
virtual nodes will then be out of the running for activa-
tion. Of the remaining virtual nodes, the one most closely
preceding 1/2 will become active for the same reason,
etc. We continue in this way down the ordered list of ad-
dresses. This greedy process clearly defines the unique
ideal state, showing (i).

Claim (ii) can be shown by arguing that every lo-
cal improvement reduces the “distance” of the current
state to the ideal state (in an appropriately chosen met-
ric). We defer the details to the full version of this paper
(cf [Ruh03, Lemma 4.5]), where we also discuss the rate
at which local improvements have to be performed in or-
der to guarantee load balance.

To prove (iii), recall how we constructed the ideal state
for claim (i) above by successively assigning nodes to in-
creasing addresses. In this process, suppose we are con-
sidering one of the first(1− ε)n addresses. Consider the
interval I of lengthε/n preceding this address. At least
εn of the real nodes have not yet been given a place on the
ring. Among the possiblecεnlogn possible virtual posi-
tions of these nodes, with high probability one will land
in the length-ε/n intervalI under consideration. So whp,
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for each of the first(1−ε)naddresses in the order, the vir-
tual node spanning that address will land within distance
ε/n preceding the address. Since these first(1− ε)n ad-
dresses break up the unit circle into intervals of size at
most 2/n, claim (iii) follows.

For (iv), it suffices to consider a deletion since the
system is Markovian, i.e. the deletion and addition of
a given node are symmetric and cause the same num-
ber of changes. Whenever a node claiming an address
is deleted, its disappearance may reveal an address that
some other node decides to claim, sacrificing its current
spot, which may recursively trigger some other node to
move. But each such migration means that the mov-
ing node has left behind no address as good as the one
it is moving to claim. Note also that only a few nodes
are close enough to any vacated address to claim it (dis-
tant ones will be shielded by some closer active node),
and thus, as the address being vacated gets higher and
higher in the order, it become less and less likely that any
node that can take it will want it. We can show that after
O(log logn) such moves, no node assigned to a higher ad-
dress is likely to have a virtual node close to the vacated
address, so the movements stop.�

We note that the above scheme is highly efficient to
implement in the Chord P2P protocol, since one has di-
rect access to the address of a successor. Moreover, the
protocol can also function when nodes disappear with-
out invoking a proper deletion protocol. By having every
node occasionally check whether they should move, the
system will eventually converge towards the ideal state.
This can be done with insignificant overhead as part of
the general maintenance protocols that have to run any-
way to update the routing information of the Chord pro-
tocol.

One possibly undesirable aspect of the above scheme
is thatO(log logn) nodes change their address upon the
insertion or deletion of a node, because this will cause a
O(log logn/n) fraction of all items to be moved. How-
ever, since every node has onlyO(logn) possible posi-
tions, it can cache the items stored at previous active posi-
tions, and will eventually incur little data migration cost:
when returning to a previous location, it already knows
about the items stored there. Alternatively, if every real
node activatesO(log logn) virtual nodes instead of just
1, we can reduce the fraction of items moved toO(1/n)
per node insertion, which is optimal within a constant
factor. All other performance characteristics are carried

over from the original scheme. It remains open to achieve
O(1/n) data migrationand O(1) virtual nodes while at-
taining all the other metrics we have achieved here.

Related Work. Two protocols that achieve near-
optimal address-space load-balancing without the use
of virtual nodes have recently been given [AHKV03,
NW03]. Our scheme improves upon them in three re-
spects. First, in those protocols the address assigned to a
node depends on the rest of the network, i.e. the address
is not selected from a list of possible addresses that only
depend on the node itself. This makes the protocols more
vulnerable to malicious attacks. Second, in those proto-
cols the address assignments depend on the construction
history, making them harder to analyze. Third, their load-
balancing guarantees are only shown for the “insertions
only” case, while we also handle deletions of nodes and
items.

3 Item Balancing

We have shown how to balance the address space, but
sometimes this is not enough. Some applications, such as
those aiming to support range-searching operations, need
to specify a particular, non-random mapping of items into
the address space. In this section, we consider a dynamic
protocol that aims to balance load forarbitrary item dis-
tributions. To do so, we must sacrifice the previous pro-
tocol’s restriction of each node to a small number of vir-
tual node locations—instead, each node is free to migrate
anywhere. This is unavoidable: if each node is limited
to a bounded number of possible locations, then for any
n nodes we can enumerate all the addresses they might
possibly occupy, take two adjacent ones, and address all
the items in between them: this assigns all the items to
one unfortunate node.

Our protocol is randomized, and relies on the under-
lying P2P routing framework only insofar as it has to be
able to contact “random” nodes in the system (in the full
paper we show that this can be done even when the node
distribution is skewed by the load balancing protocol).
The protocol is the following (whereε is any constant,
0 < ε < 1). Recall that each node stores the items whose
addresses fall between the node’s address and its prede-
cessor’s address, and that` j denotes the load on nodej.

Item balancing: Each nodei occasionally contacts an-
other nodej at random. If̀ i ≤ ε` j or ` j ≤ ε`i then
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the nodes perform a load balancing operation (as-
sume wlog that̀ i > ` j ), distinguishing two cases:

Case 1:i = j +1: In this case,i is the successor ofj
and the two nodes handle address intervals next to
each other. Nodej increases its address so that
the (`i − ` j)/2 items with lowest addresses get re-
assigned from nodei to node j. Both nodes end up
with load(`i + ` j)/2.

Case 2:i 6= j +1: If ` j+1 > `i , then we seti := j + 1
and go to case 1. Otherwise, nodej moves between
nodesi− 1 andi to capture half of nodei’s items.
This means that nodej ’s items are now handled by
its former successor, nodej +1.

To state the performance of the protocol, we need the
concept of ahalf-life [LNBK02], which is the time it
takes for half the nodes or half the items in the system
to arrive or depart.

Theorem 2 If each node contactsΩ(logn) other random
nodes per half-life as well as whenever its own load dou-
bles, then the above protocol has the following proper-
ties.

(i) With high probability, the load of all nodes is be-
tweenε

8L and 16
ε L.

(ii) The amortized number of items moved due to load
balancing is O(1) per item insertion or deletion,
and O(N/n) per node insertion or deletion.�

The proof of this theorem relies on the use of a potential
function (some constant minus the entropy of the load
distribution) that is large when the load is unbalanced.
We show that item insertions and node departures cause
only limited increases in the potential, while our balanc-
ing operation above causes a significant decrease in the
potential if it is large.

The traffic caused by the update queries necessary for
the protocol is sufficiently small that it can be buried
within the maintenance traffic necessary to keep the P2P
network alive. (Contacting a random node for load in-
formation only uses a tiny message, and does not result
in any data transfers per se.) Of greater importance for
practical use is the number of items transferred, which is
optimal to within constants in an amortized sense.

The protocol can also be used if items are replicated to
improve fault-tolerance, e.g. when an item is stored not
only on the node primarily responsible for it, but also on
theO(logn) following nodes. In that setting, the load` j

refers only to the number of items for which a nodej is
primarily responsible. Since the item movement cost of
our protocol as well as the optimum increase by a factor
of O(logn), our scheme remains optimal within a con-
stant factor.

The above protocol can provide load balance even for
data that cannot be hashed. In particular, given an ordered
data set, we may wish to map it to the[0,1) interval in an
order-preserving fashion. Our protocol then supports the
implementation of a range search data structure. Given a
query key, we can use Chord’s standard lookup function
to find the first item following that keyin the keys’ defined
order. Furthermore, given itemsa andb, the data struc-
ture can follow node successor pointers to return all items
x stored in the system that satisfya≤ x≤ b. We give
the first such protocol that achieves anO(logn+Kn/N)
query time (whereK is the size of the output).

Related Work. Randomized protocols for load balanc-
ing by moving items have received much attention in the
research community. A P2P algorithm similar to ours
was studied in [RLS+03]. However, their algorithm only
works when the set of nodes and items are fixed (i.e.
without insertions or deletions), and they give no prov-
able performance guarantees, only experimental evalua-
tions.

A theoretical analysis of a similar protocol was given
by Anagnostopoulos, Kirsch and Upfal [AKU03], who
also provide several further references. In their setting,
however, items are assumed to be jobs that are executed
at a fixed rate, i.e. items disappear from nodes at a fixed
rate. Moreover, they analyze the average wait time for
jobs, while we are more interested in the total number of
items moved to achieve load balance.

In recent independent work, Ganesan and Bawa
[GB03] consider a load balancing scheme similar to ours
and point out applications to range searches. However,
their scheme relies on being able to quickly find the least
and most loaded nodes in the system. It is not clear
how to support this operation efficiently without creat-
ing heavy network traffic for these nodes with extreme
load.

Complex queries such as range searches are also an
emerging research topic for P2P systems [HHH+02,
HHL+03]. An efficient range search data structure was
recently given [AS03]. However, that work does not ad-
dress the issue of load balancing the number of items per
node, making the simplifying assumption that each node
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stores only one item. In that setting, the lookup times are
O(logN) in terms of the number of itemsN, and not in
terms of the number of nodesn. Also,O(logN) storage is
used per data item, meaning a total storage ofO(N logN),
which is typically much worse thanO(N+nlogn).

4 Conclusion

We have given several provably efficient load balanc-
ing protocols for distributed data storage in P2P sys-
tems. (More details and analysis can be found in a the-
sis [Ruh03].) Our algorithms are simple, and easy to im-
plement, so an obvious next research step should be a
practical evaluation of these schemes.

In addition, several concrete open problems follow
from our work. First, it might be possible to further im-
prove the consistent hashing scheme as discussed at the
end of section 2. Second, our range search data structure
does not easily generalize to more than one order. For ex-
ample when storing music files, one might want to index
them by both artist and song title, allowing lookups ac-
cording to two orderings. Since our protocol rearranges
the items according to the ordering, doing this for two or-
derings at the same time seems difficult. A simple, but in-
elegant, solution is to rearrange not the items themselves,
but just store pointers to them on the nodes. This re-
quires far less storage, and makes it possible to maintain
two or more orderings at once. Lastly, permitting nodes
to choose arbitrary addresses in our item balancing pro-
tocol makes it easier for malicious nodes to disrupt the
operation of the P2P network. It would be interesting to
find counter-measures for this problem.
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