
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Efficient kinetic data structures for MaxCut

Artur Czumaj ∗† Gereon Frahling ‡ Christian Sohler §¶

Abstract

We develop a randomized kinetic data structure that
maintains a partition of the moving points into two sets
such that the corresponding cut is with probability at
least 1−% a (1−ε)-approximation of the Euclidean Max-
Cut. The data structure answers queries of the form
“to which side of the partition belongs query point p?”
in O(21/εO(1)

log2 n/ε2(d+1)) time. Under linear motion
the data structure processes Õ(n log(%−1)/εd+3) events,
each requiring O(log2 n) expected time except for a con-
stant number of events that require Õ(n · ln(%−1)/εd+3)
time. A flight plan update can be performed in
O(log3 n · ln(%−1)/εd+3) average expected time, where
the average is taken over the worst case update times
of the points at an arbitrary point of time. No efficient
kinetic data structure for the MaxCut has been known
before.

1 Introduction

The problem of clustering data sets according to some
similarity measures belongs to the most extensively
studied optimization problems. In this paper we will
focus on clustering moving points as described in the
framework of kinetic data structures (KDS). The frame-
work of kinetic data structures has been introduced by
Basch et al. [3] and it has been used since as the cen-
tral model of studying geometric objects in motion, see,
e.g., [1, 3, 11, 12] and the references therein. In the
kinetic setting, we consider a set of points in Rd that
are continuously moving. Each point follows a (known)
trajectory that is defined by a continuous function of
time; for simplicity of presentation, we will assume that
it is a linear function. Additionally, we allow the points
to change their trajectory, i.e., to perform a flight plan
update. The KDSs are data structures to maintain a cer-
tain attribute (for example, in the case of a clustering
problem, assignment of the points to the clusters) under
movement of the points. The main idea underlying the

∗Department of Computer Science, University of Warwick,
czumaj@dcs.warwick.ac.uk
†Research supported in part by the Centre for Discrete Math-

ematics and its Applications (DIMAP), University of Warwick.
‡Google Research, New York, gereon@google.com
§Heinz Nixdorf Institute and Institute for Computer Science,

University of Paderborn, csohler@upb.de
¶Supported by DFG grant Me 872/8-3.

framework of KDSs is that even if the input objects are
moving in a continuous fashion, the underlying combi-
natorial structure of the moving objects changes only at
discrete times. Therefore, there is no need to maintain
the data structure continuously but rather only when
certain combinatorial events happen.

To measure the quality of a KDS, we will consider
the following two most important performance measures
(for more details, see, e.g., [11, 12]): the time needed to
update the KDS when an event occurs and a bound on
the number of events that may occur during the motion.
Another important measure is the time to handle flight
plan updates.

MaxCut problem. In this paper, we consider the Eu-
clidean version of the MaxCut problem. For metric
graphs (and hence also for geometric instances), Fer-
nandez de la Vega and Kenyon [7] designed a PTAS.
For the Euclidean version of the MaxCut that we study
in this paper, it is still not known if the problem is
NP-hard but a very fast PTAS can be obtained using a
recent construction of small coresets for MaxCut [8].

In this paper, we develop the first efficient KDS for
approximate Euclidean MaxCut for moving points. Our
KDS is based on a coreset construction for MaxCut from
[8]. In [8], it was shown in the context of data streaming
algorithms that one can obtain a coreset from the distri-
bution of certain sample sets of the point set in nested
grids. Our KDS is based on the idea of maintaining
these distribution under motion. The main difficulty of
applying that approach lies in the interplay between a
lower bound on the cost of the solution and the num-
ber of events, which requires some new ideas. Our KDS
is not only the first efficient KDS for approximate Eu-
clidean MaxCut, but it also puts the MaxCut problem
into a very small set of complex geometric problems for
which there exists a KDS requiring only Õ(n) events;
many geometric problems, some even surprisingly sim-
ple ones, are known to have no KDS with o(n2) events.

2 Previous results used by our algorithm

We review a coreset construction from [8] and focus on
the MaxCut problem. (Since some details of that con-
struction that we need in the current paper differ from
the presentation in [8], we will present some more for-
mal arguments in Appendix A.) Let P be a point set in

19th Canadian Conference on Computational Geometry, 2007

the Rd. For simplicity of presentation, we normalize the
cost of the optimal solution of the MaxCut problem by
dividing the cost by the number of points n, and define
for each partition of P into C1 and C2:

M(C1, C2) := 1
n ·MaxCut(P,C1, C2)

= 1
n

∑
q1∈C1,q2∈C2

d(q1, q2) .

We furthermore define

Opt := 1
n · max

C1,C2
MaxCut(P,C1, C2) = max

C1,C2
M(C1, C2) ,

and for weighted point sets C1, C2 with weight functions
w1 : C1 → N and w2 : C2 → N, we define

M(C1, C2) :=

∑
q1∈C1,q2∈C2

w1(q1) · w2(q2) · d(q1, q2)∑
q1∈C1

w1(q1) +
∑
q2∈C2

w2(q2)
.

Definition 1 (ε-coresets) A point set Q with integer
weights w(q) is an ε-coreset for P if there exists a map-
ping π from P to Q such that (i) π−1(q) = w(q) for
every q ∈ Q and (ii) the objective value M(C1, C2) for
any partition C1, C2 of P differs at most ε · Opt from
the objective value M(π(C1), π(C2)) of the correspond-
ing partition of Q (think of π(C1) = {π(p)|p ∈ C1} as a
set with weights w(q) = |{p ∈ C1|π(p) = q}|).

Let b be the largest side width of the bounding box of
P . In [8] a family of nested grids G(i) is used, where G(i)

denotes a grid of cell width b/2i. Let % be a confidence
parameter, 0 < % < 1, and let δ be a parameter of
the algorithm introduced in Lemma 17. For each grid
G(i), a random sample S(i) is chosen, where each point
from P is taken to S(i) with probability α

δ 2i , where
α = 12ε−2 ln(%−1) + 1. Thus, the random sample S(i)
has expected size s = α

δ 2i · n.

Lemma 2 (Coresets for MaxCut [8]) There is an
algorithm that takes as input the number of points
from S(i) in each grid cell C ∈ G(i) and computes
a weighted set of points PC which satisfies the fol-
lowing constraints with probability at least 1 − %: If

δ ≤ ε·Opt

4
√
d (1+logn) b

(
ε

56
√
d

)d
the set PC is a (c ·ε)-coreset

of P for some constant c. If ε·Opt

8
√
d (1+logn) b

(
ε

56
√
d

)d
≤

δ ≤ ε·Opt

4
√
d (1+logn) b

(
ε

56
√
d

)d
then the size of PC is at

most 34
√
d (1+logn)
ε

(
56
√
d

ε

)d
.

Note that a good choice for parameter δ depends on
the cost of an optimal solution.

Theorem 3 (Kinetic Heaps [2]) Let P be an ini-
tially empty set of points moving along linear trajecto-
ries in R1. Let σ = σ1, . . . , σm be a sequence of m oper-
ations σi of the form Insert(p, ti) and Delete(p, ti),

such that for any two operations σi, σj with i < j we
have ti < tj (the operations are performed sequentially
in time). An Insert(p, ti) inserts at time ti point p
into P . A Delete(p, ti) removes p from P at time ti.
A kinetic heap maintains the biggest element of P . It
requires O(logm) time to process an event and the ex-
pected number of events is O(m logm). Insertions and
deletions are performed in expected time O(log2m).

Theorem 4 (Bounding Cube Approximation [1])
Let P be a set of n points moving in Rd. If P is mov-
ing linearly, then after O(n) preprocessing, we can
construct a kinetic data structure of size O(d) that
maintains a 2-approximation of the smallest orthogonal
box containing P . The data structure processes O(d2)
events, and each event takes O(1) time. The sides of
the maintained box are moving linearly between the
events.

It can be decided in constant time if a flight plan up-
date of a point p changes the data structure. At each
point of time only flight plan updates of O(d) points can
potentially change the data structure.

3 Kinetic data structures for MaxCut

In this section we describe a KDS to maintain a (1− ε)-
approximation of a maximum cut. Our data structure
supports queries of the type “to which side of the parti-
tion belongs query point p?”. To support such a query
the algorithm computes a coreset that has complexity
O(log n/εd+1). Our data structure depends on a pa-

rameter K = α/δ∗, where δ∗ =
ε
(

ε

56
√
d

)d
4
√
d (1+logn)

is a lower
bound for the value of δ, which can be obtained by set-
ting Opt = b. We first create a sample set Si,j for every
0 ≤ i, j ≤ log(Kn). Si,j is obtained from P by choos-
ing each point p ∈ P independently at random with
probability min{ K

2i+j , 1}.
We define G(0) as a 2-approximated bounding cube of

P and G(i) as a partition of this bounding cube into 2id

equal sized (hyper-)cubes. For each 1 ≤ i, j ≤ log(Kn),
we maintain the set of all cells C ∈ G(i) containing
sample points from Si,j and the number of sample points
in each non-empty cell. Lemma 2 shows that at least for
one value of j it is possible to compute a small coreset
from the maintained information using the approach of
[8].

The data structure. We assume that the cells in grid
G(i) are numbered from 1 to 2id. For each sample set
Si,j we maintain a search tree Ti,j that stores the cells in
grid G(i) that contain at least one point from Si,j . For
each non-empty cell we maintain 2d kinetic heaps. For
1 ≤ k ≤ d we maintain one kinetic max-heap and one
kinetic min-heap, where the priority of points is given
by their k-th coordinate.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

We maintain a 2-approximation of the bounding cube
using the KDS from [1]. The O(d2) events of this KDS
are called major events. Between any major events all
movements of points and cell borders are linear.

The events. Additionally to the major events and
the heap events (events caused by the kinetic heaps),
our data structure stores the following (possible) events
in a global event queue: For each grid G(i) and each
non-empty cell we have an event for each dimension k,
1 ≤ k ≤ d, when the maximum or minimum point with
respect to that dimension crosses the corresponding cell
boundary in that dimension. These events are called
minor events. At each major event the movement of
the grid boundaries changes and we must update every
event that involves a boundary, i.e., every minor event.

Time to process events. We first consider minor
events, when a point p in some set Si,j moves from one
cell C1 of the grid into another cell C2. p is then deleted
from 2d heaps corresponding to C1 and is inserted into
the 2d heaps corresponding to C2. If the point moves
into a cell that was previously empty, we must insert the
index of C2 into the search tree Ti,j and initialize the 2d
heaps. If p was the only point in C1 we have to delete
the 2d heaps. Since in O(log2 n) time one can insert a
point in a heap or search tree and since any insertion in
a randomized kinetic heap creates O(log n) new events
in expectation, we get:

Lemma 5 Any minor event can be processed in
O(d log2 n) time. It creates O(d log n) new events in
randomized kinetic heaps in expectation. ut

Lemma 6 Any major event can be processed in ex-
pected time O(dK n log n).

Proof. The time to setup our data structure at a ma-
jor event is dominated by the time to setup the ki-
netic heaps for the boundary events. Since each kinetic
heap consisting of m points can be constructed in time
O(m · logm) we have to count the number of sample
points in all kinetic heaps. Each sample point is in-
serted into 2d kinetic heaps. The expected number of
points in Si,j is Kn/2i+j . By linearity of expectation we
get that the total number of points in all kinetic heaps
is
∑
i,j 2d · Kn2i+j = O(dKn). �

Lemma 7 Between major events, every point crosses
at most d · (2i − 1) cells in grid G(i).

Proof. Let us consider an arbitrary point p. We regard
the cell boundaries in each dimension separately. In grid
G(i) we have 2i − 1 internal boundaries. Since both p
and the boundaries move linearly in time, p can cross
each boundary at most once. Since this can happen in
each of the dimensions, the lemma follows. �

Corollary 8 The expected number of minor events is
O(d3K n · log(Kn)).

Proof. The expected number of minor event involv-
ing points from Si,j is at most K n

2i+j · d · 2
i = dK n/2j .

Summing up over all i, j we get that there are at most
O(dK n log(Kn)) events. �

Corollary 9 The expected number of heap events is
O(d4 ·K · n · log2(Kn)).

Proof. Every minor event creates an expected num-
ber of O(d log n) new events in randomized kinetic
heaps. Linearity of expectation implies that the ex-
pected number of events in kinetic heaps is O(d4 · K ·
n · log2(Kn)). �

Flight plan updates. In KDS it is typically assumed
that at certain points of time the “flight plan” of an
object can change. The data structure is notified that
a point now moves in another direction (possibly at a
different speed) and we have to update all events in the
event queue that involve this particular point. In our
case we distinguish between two types of points. First,
there are the two points that currently define the size
of the bounding cube within the data structure from
[1]. If the movement of one of these points is changed,
the movement of all cells change and we have to update
every event that involves a cell boundary (this is similar
to the case of major events). Additionally, we have to
update every 1-dimensional bounding cube we maintain.

If the flight plan of any other point is updated we
simply have to update all events it is involved in and
the bounding cube data structure. Since it requires
O(log2 n) time to update a kinetic heap we have to com-
pute the expected number of such heaps a point is in-
volved in. Every point is stored in 2d heaps for each set
Si,j it is contained in. These are O(dK) kinetic heaps
in expectation (analogous to proof of Lemma 6)

Assume we fix some point of time and specify for each
point an arbitrary flight plan update. If we choose one of
these updates uniformly at random then the expected
time to perform the update is small, i.e., the average
cost of a flight plan update is low (proof in Appendix):

Lemma 10 A flight plan update can be done in
O(log3 n · ln(%−1)/εd+3) average expected time.

Extracting the coreset and a solution. We can do
a binary search on the different values of δ(j) = δ∗/2j .
The coreset technique described in [8] is capable to iden-
tify a value of δ, which leads to a small coreset having
the desired approximation guarantees of Lemma 2. We
then apply the MaxCut computation method described
in [8] (also described in the Appendix in detail) to ex-
tract a solution on the coreset in Õ(n2 · 21/εO(1)

) time.

19th Canadian Conference on Computational Geometry, 2007

We finally obtain our main theorem, where we assume
that d is a constant:

Theorem 11 There is a kinetic data structure that
maintains a (1 + ε)-approximation for the Euclidean
MaxCut problem, which is correct with probability 1−%.
The data structure answers queries of the form ’to which
side of the partition belongs query point p?’ in O(log2 n·
ε−2(d+1) · 21/εO(1)

) time. Under linear motion the data
structure processes Õ(n log(%−1)

εd+3) events, which require
O(log2 n) expected time except for a constant number
of events that require Õ(n · ln(%−1)/εd+3) time. A flight
plan update can be performed in O(log3 n · ln(%−1)/εd+3)
average expected time, where the average is taken over
the worst case update times of the points at an arbitrary
point of time.

4 Conclusions

In this paper we developed the first kinetic data struc-
ture for the Euclidean MaxCut problem. Our KDS
is based on a coreset construction from [8]. For the
streaming problems, the construction in [8] works also
for other problems like k-median and k-means cluster-
ing, maximum matching, MaxTSP, and maximum span-
ning tree. Our KDS can be extended to the three maxi-
mization problems mentioned above (maximum match-
ing, MaxTSP, and maximum spanning tree). However,
the runtime to compute a solution from the coreset
(which has to be done for each query to the data struc-
ture, or, alternatively with each event) can differ sig-
nificantly. For the maximum spanning tree problem we
can easily obtain similar results as for MaxCut; for the
MaxTSP we do not know how to do the computation
efficiently (and hence we do not obtain a very efficient
KDS).

Extending our KDS to k-median and k-means clus-
tering requires additional ideas. The technical problem
is here that one cannot get a lower bound on the solu-
tion from the width of the bounding box. Hence, it is
not clear how to get an upper bound on the number of
events.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadara-
jan. Approximating extent measures of points.
Journal of the ACM, 51(4):606–635, July 2004.

[2] J. Basch. Kinetic Data Structures. Ph.D. thesis,
Stanford University, 1999.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–
28 1999.

[4] J. Basch, L. J. Guibas, and G. Ramkumar. Sweep-
ing lines and line segments with a heap. Proc. 13th
Annual ACM Symposium on Computational Geom-
etry, pp. 469–471, 1997.

[5] S. Bespamyatnikh, B. Bhattacharya, D. Kirk-
patrick, and M. Segal. Mobile facility location.
Proc. 4th DIAL M, pp. 46–53, 2000.

[6] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. Proc. 43rd IEEE Symposium on Foundations
of Computer Science, pp. 617–626, 2002.

[7] W. Fernandez de la Vega and C. Kenyon. A ran-
domized approximation scheme for metric MAX-
CUT. Proc. 39th IEEE Symposium on Foundations
of Computer Science, pp. 468–471, 1998.

[8] G. Frahling and C. Sohler. Coresets in dynamic
geometric data streams. Proc. 37th Annual ACM
Symposium on Theory of Computing, pp. 209–217,
2005.

[9] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for Maximum Cut and
satisfiability problems using semidefinite program-
ming Journal of the ACM, 42:1115–1145, 1995.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and approxi-
mation. Journal of the ACM, 45(4):653–750, 1998.

[11] L. J. Guibas. Kinetic data structures — a state of
the art report. Proc. 3rd Workshop on the Algorith-
mic Foundations of Robotics, pp. 191–209, 1998.

[12] L. J. Guibas. Modeling motion. In Handbook
of Discrete and Computational Geometry, edited
by J. E. Goodman and J. O’Rourke, 2nd edition,
Chapter 50, pp. 1117–1134, 2004.

[13] S. Har-Peled and S. Mazumdar. Coresets for
k-means and k-medians and their applications.
Proc. 36th Annual ACM Symposium on Theory of
Computing, pp. 291–300, 2004.

[14] S. Har-Peled. Clustering motion. Discrete & Com-
putational Geometry, 31:545–565, 2004.

[15] J. Hershberger. Smooth kinetic maintenance of
clusters. Computational Geometry, Theory and
Applications, 31(1–2):3–30, 2005.

[16] P. Indyk. High-dimensional Computational Geom-
etry. PhD thesis, Stanford, 2000.

[17] H. Kaplan, R. E. Tarjan, and K. Tsioutsioulik-
lis. Faster kinetic heaps and their use in broadcast
scheduling. Proc. 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 834–844,
2001.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Appendix

A Formal arguments from [8] as used in the paper

For the sake of completeness and since some of the de-
tails of the coreset construction used in this paper differ
in their presentation from [8] (which makes their use in
the context of kinetic data structures simpler), in this
section, we will present some proofs of the results used
in our paper.

We have the following simple lemma.

Lemma 12 [7, 8] Let C1, C2 be a partition of P , p ∈
C1 and p̃ be an arbitrary point with d(p, p̃) ≤ D. Then
|M(C1, C2)−M((C1 \ {p}) ∪ {p̃}, C2)| ≤ D (i.e., mov-
ing a point at distance at most D changes the cost of
MaxCut by at most D).

Let Ψ = 1
n ·
∑
p∈P p be the center of gravity of P .

Then Opt ≥ 1
4

∑
p∈P d(p,Ψ).

Proof. The first property follows directly from the def-
inition of M and the triangle inequality.

To prove the second property, we use an inequality
shown by Fernandez de la Vega and Kenyon [7] (in
the proof of Lemma 2): For each point p: d(p,Ψ) ≤
1
n

∑
q∈P d(p, q).

Consider a random cut C1, C2 of P (for each point we
flip a coin at random to decide whether it belongs to C1

or to C2). Since for every pair of points p, q ∈ P , the
edge (p, q) is in the cut with probability 1

2 , the expected
value of the resulting cut is 1

4

∑
p,q∈P d(p, q). Since Opt ·

n is the maximum value of such a cut, we conclude that
Opt ≥ 1

4n

∑
p,q∈P d(p, q) ≥ 1

4

∑
p∈P d(p,Ψ). �

Definition 13 (Heavy and light cells) We say that
a cell in grid G(i) is δ-heavy, if it contains more than
δ 2i points. A cell that is not δ-heavy is called δ-light.

We describe the construction of an ε-coreset Q for
P [8]. We say a cell C1 in grid G(i) is the parent of a
cell C2 in grid G(i+1), if C1 contains C2. We define the
coreset Q by taking to Q the center of every δ-heavy
cell C that has no δ-heavy subcell. To determine the
weights of the points in Q, we construct a mapping π
from P to Q. Every point p is contained in a δ-light
cell whose parent cell C is δ-heavy. Then p is assigned
to an arbitrary coreset point in C. We use an arbitrary
mapping π that satisfies this condition. The weight of
a point q ∈ Q is |π−1(q)|, i.e., the number of points
assigned to q. The following theorem describes main
properties of the construction.

Theorem 14 [8] If δ ≤ ε·Opt

4
√
d (1+logn) b

(
ε

56
√
d

)d
then

any set Q constructed as described above is an ε-coreset

for P . If additionally δ ≥ ε·Opt

8
√
d (1+logn) b

(
ε

56
√
d

)d
then

the number of heavy cells (and the size of the coreset)

is at most 17
√
d (1+logn)
ε

(
56
√
d

ε

)d
.

To prove the Theorem, let us define L(i) to be the set
of occupied light cells in grid G(i) whose parent cell is
heavy. We partition L(i) into two sets N(i) and D(i)
according to their distance to the center of gravity Ψ:

N(i) =

{
C ∈ L(i) : d(C,Ψ) ≤ 16

√
d b

ε 2i

}
and

D(i) =

{
C ∈ L(i) : d(C,Ψ) >

16
√
d b

ε 2i

}
.

We observe that any point in a cell of L(i) is moved
at most

√
d b/2i−1 during our coreset construction, be-

cause it remains in the parent cell. Furthermore, each
point is contained in exactly one cell from

⋃
L(i) Let us

begin our analysis with points in
⋃
D(i). We have the

following claim.

Claim 15∑
i

∑
p∈D(i)

√
d b/2i−1 ≤ ε

2
Opt .

Proof. We use a charging argument from [13]. Any
point in D(i) has a distance of more than 16

√
d b

ε 2i to the
center of gravity Ψ. Hence we get∑

i

∑
p∈D(i)

√
d b/2i−1 ≤ ε

8

∑
i

∑
p∈D(i)

d(p,Ψ)

≤ ε

8
4 ·Opt

1
=

ε

2
·Opt ,

where the second inequality follows from our assumption
that Opt ≥ 1/4

∑
p∈P d(p,Ψ). ut �

Next, we consider points in
⋃
N(i). We obtain the

following claim.

Claim 16 If δ ≤ εOpt

4
√
d k (1+logn) b

·
(

ε
56
√
d

)d
, then∑

i

∑
p∈N(i)

√
d b/2i−1 ≤ ε

2
·Opt .

Proof. By the definition of N(i), every point in a cell in
N(i) has distance to the center of gravity Ψ of at most(

2
√
d+ 8

√
d

ε

)
b/2i. Since each cell in N(i) is disjoint

and has side-length b/2i, simple packing arguments im-
ply the following inequality:

|N(i)| ≤

(
2

(
1 + 2

√
d+

16
√
d

ε

))d
≤

(
56
√
d

ε

)d
.

19th Canadian Conference on Computational Geometry, 2007

Since each of the considered cells is light, it contains at
most δ 2i points. Hence,∑

i

∑
p∈N(i)

√
d b/2i−1

≤
∑

i:N(i) 6=∅

(
56
√
d

ε

)d
δ 2i
√
dOpt/2i−1

=
∑

i:N(i) 6=∅

2
√
d δ

(
56
√
d

ε

)d
·Opt .

Next, let us observe that the threshold δ 2i for heavy
cells doubles with each grid and that we can have an
occupied light cell only if the threshold is bigger than
one. If the threshold is bigger than 2n the parent cell
can not be heavy. Therefore, there are at most 1+log n
grids that have light grid cells whose parent cells are
heavy. We conclude that,∑

i

∑
p∈N(i)

√
d b/2i−1

≤
∑

i:N(i) 6=∅

δ 2
√
d

(
56
√
d

ε

)d
Opt

≤ (1 + log n) δ 2
√
d

(
56
√
d

ε

)d
·Opt

≤ ε

2
·Opt ,

for our choice of δ. ut �

We observe that
⋃
i L(i) covers all points and so we

count the movement cost for every point. By our initial
assumption, we know that if we move the points from P
by an overall distance of D, then the cost of any solution
changes (increases or decreases) by at most D. There-
fore Claims 15 and 16 imply that the overall movement
is at most εOpt . Hence, the set Q constructed by our
algorithm is a coreset.

The bound for the size of the coreset follows from
the observation that in each grid G(i) there can be
at most 2d cells whose distance to Ψ is smaller than
half of the width of the cells in G(i). Hence, except
for these 2d cells, every heavy cell contributes with at
least δ b/2. We conclude that the number of marked
heavy cells (which is also an upper bound on the num-
ber of coreset points) is at most 2Opt

δ b + (1 + log n) 2d.

Therefore, if we set δ ≥ εOpt

8
√
d (1+logn) b

(
ε

56
√
d

)d
and

δ ≤ εOpt

4
√
d (1+logn) b

(
ε

56
√
d

)d
, then since we assume that

d is constant, we obtain the size of the coreset to be
upper bounded by

17
√
d (1 + log n)

ε

(
56
√
d

ε

)d
≤ O(k log n ε−(d+1)) .

This concludes the proof of Theorem 14.

A.1 Proof of Lemma 2

The proof requires some auxiliary lemmas.

Lemma 17 [8] Let ε < 1/3, and let C be an arbitrary
grid cell in G(i). The following events hold with proba-
bility at least 1− ρ:

• If C contains at least 1
2δ·2

i points, then (1−ε)·nC ≤
ñC ≤ (1 + ε) · nc.

• If C contains less than 1
2δ · 2

i points, then ñC ≤
(1− ε) · δ · 2i.

Proof. Let Xp be the indicator random variable that
p is a sample point. Our goal is to show that

∑
p∈C Xp

does not deviate much from its expectation. If a cell
contains at least 1

2δ2
i points then E[

∑
p∈C Xp] ≥ α/2.

From the Chernoff bound, it follows

Pr
[∣∣∑
p∈C

Xp −E[
∑
p∈C

Xp]
∣∣ ≥ ε ·E[

∑
p∈C

Xp]
]
≤ 2e−ε

2α/6 ,

and the first part of the lemma follows for the chosen
value of α. To prove the second part we observe that the
absolute deviation decreases when the number of points
in the cell decreases. Therefore, we apply the Chernoff
bound to the case when C contains 1

2δ · 2
i points. In

this case the expected number of points in the cell is
α/2 and the second part of the lemma follows. �

To obtain a coreset we use the estimations ñC of the
number of points in heavy cells to identify heavy cells
(all cells having ñC ≥ (1− ε)δ 2i). Since the weight of a
coreset point will also depend on the number of points
in some light cells, we have to estimate the number of
points in these cells. To get an estimate for all required
cells we use the following procedure. We require that
the estimate for the number of points in a heavy cell is a
(1± ε)-approximation and that in every light cell there
are no more points than the threshold for light cells (our
coreset construction uses only these assumptions).

By Lemma 17 we know for each heavy cell C with
probability 1−ρ we have ñC/(1+ε) ≤ nC ≤ ñC/(1−ε).
For every heavy cell we define LC = ñC/(1 + ε) and
UC = ñC/(1− ε). For every light cell we define LC = 0
and UC = δ2i (so for every cell we know that LC ≤
nC ≤ UC). We call a cell useful, if it is either heavy or
a direct subcell of a heavy cell. We have to deal with
the fact that the sum of the total estimated number of
points

∑
Cisubcell of C nCi in the subcells of C can exceed

the estimated number of points in C. Therefore we will
use the bounds LC and UC to compute new estimates
EC of the number of points in all useful cells. We require
that our estimation satisfies LC ≤ EC ≤ UC and that
the estimated number of points in a cell C is the sum

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

of the estimated number of points in its subcells. The
estimates EC can be computed bottom-up by adjusting
the bounds LC and UC in cases of conflicts.

Corollary 18 [8] Let ε < 1/2. For each cell C identi-
fied as heavy we have (1− 4ε)nC ≤ EC ≤ (1 + 4ε)nC .

Proof. The claim follows directly from the following
two sequences of inequalities.

EC ≥ LC ≥ ñC/(1 + ε) ≥ 1− ε
1 + ε

nC ≥ (1− 2ε)nC

and

EC ≤ UC ≤ ñC/(1− ε) ≤
1 + ε

1− ε
nC ≤ (1 + 4ε)nC .

�

We now apply the algorithm described in Section 2
to our estimations EC and compute a coreset.

Lemma 19 [8] If δ ≤ ε·Opt

4
√
d (1+logn) b

(
ε

56
√
d

)d
the core-

set computed with respect to the values EC is a (1 +
O(ε))-coreset of P .

Proof. Let P ′ be a point set that is distributed ac-
cording to our estimations EC (so for every useful cell
C we have |P ∩ C| = EC). The proof of Theorem 14
shows that the coreset computed by our algorithm is
a (1 + ε)-coreset for P ′. Let Q = {q1, . . . , qm} be the
computed coreset points. We will show that knowing
the point sets P and P ′, our method can compute map-
pings π : P → Q and π′ : P ′ → Q and weight functions
w : Q→ N and w′ : Q→ N, such that (π,w) is a coreset
for P and (π′, w′) is a coreset for P ′ and for all qi ∈ Q
we have (1 − 4ε)w(qi) ≤ w′(qi) ≤ (1 + 4ε)w(qi). From
that it easily follows that each solution on the point
set P ′ differs by at most a factor of (1 + O(ε)) from
the solution on the point set P . Since the computed
coreset is a (1 + ε)-coreset for P ′ it follows that it is a
(1 +O(ε))-coreset for P .

Let us construct the mappings π and π′. Theorem 14
shows that we construct a coreset when we map each
point p to a coreset point in the smallest heavy cell it
is contained in. We now start the assignment of points
to coreset points within the smallest useful cells. Since
the smallest useful cells are not heavy we do not assign
them any points. We now proceed to assign points in
the useful cells at the next higher level. Going through
the levels bottom-up we will maintain the invariant that
the number w(q) of points in P mapped to a coreset-
point q by π is approximately equal to the number of
points w′(q) mapped by π′ to the coreset point:

(1− 4ε)w(q) ≤ w′(q) ≤ (1 + 4ε)w(q) .

Let C be a heavy cell. If there is no heavy subcell,
the algorithm introduces a new coreset point q. We map
all EC points from P ′ to q and all nC points from P to
q. Then w(q) = EC and w′(q) = nC and the invariant
follows from Corollary 18. Let us now consider the case
that C has already k coreset points q1, . . . , qk ∈ Q with
weights w(qi) and w′(qi), respectively. Let l := nC −∑k
i=1 w(qi) resp. l′ := EC −

∑k
i=1 w

′(qi) be the number
of points which have to be assigned to the coreset points
qi by π resp. π′. We consider four cases:

• l = 0 and l′ = 0: In this case nothing has to be
assigned and the invariant holds.

• l > 0 and l′ = 0: Then

(1− 4ε)
k∑
i=1

w(qi)

= (1− 4ε)(nC − l) < (1− 4ε)nC

≤ EC =
k∑
i=1

w′(qi) .

Therefore for one qi we have (1− 4ε)w(qi) < w′(qi)
and can assign a small fraction of the points from
P to qi by π without violating the invariance. After
that assignment either l = 0 or we find another qi
where we can assign points to. We go on with this
assignment until l = 0.

• l = 0 and l′ > 0: Then
k∑
i=1

w′(qi) = EC − l′ < EC ≤ (1 + 4ε)nC

= (1 + 4ε)(nC − l) = (1 + 4ε)
k∑
i=1

w(qi) .

Therefore for one qi we have w′(qi) < (1 + 4ε)w(qi)
and can assign a small fraction of the points from P ′

to qi by π′ without violating the invariance. After
that assignment either l′ = 0 or we find another qi
where we can assign points to. We go on with this
assignment until l′ = 0.

• l > 0 and l′ > 0: We will assign min{l, l′} points
from P to q1 by π and min{l, l′} points from P ′

to q1 by π′. This does not violate the invariance.
After the assignment we are in the second or third
case.

�

Lemma 20 [8] If ε·Opt

8
√
d (1+logn) b

(
ε

56
√
d

)d
≤ δ ≤

ε·Opt

4
√
d (1+logn) b

(
ε

56
√
d

)d
then the number of cells consid-

ered as heavy (and the size of the computed coreset) is

at most 34
√
d (1+logn)
ε

(
56
√
d

ε

)d
.

19th Canadian Conference on Computational Geometry, 2007

Proof. The proof follows exactly the proof of Theorem
14. Since we only have a lower bound on the number of
points in cells considered as heavy of 1

2δ2
i (instead of

δ2i), the number of cells considered as heavy can change
by a factor of 2. �

Now, we can summarize the discussion in this section
and observe that Lemma 2 follows directly from Lem-
mata 19 and 20.

B Proof of Lemma 10

Proof of Lemma 10 : It requires O(log2 n) time
to do a flight plan update of a kinetic heap. In ex-
pectation every point is stored in O(dK) kinetic heaps.
Hence the expected time required to update these heaps
is O(dK log2 n) = O(d · log3 n · log(%−1)/εd+3). Addi-
tionally, we have to update the 2d KDS that are used to
maintain the 1-dimensional bounding cubes. This can
be done in O(d) time. Finally, we have to deal with
updates of the 2 points that are currently defining the
size of the d-dimensional bounding cube. By Lemma
6 we can process such an event in O(dKn log n) =
O(n·log2 n ln(%−1)/εd+3) expected time. Averaging over
all point we get that the average expected update time
is O(d · log3 n · log(%−1)/εd+3). ut

C Extracting a coreset from the data structure

The only problem in extracting a coreset from our grid
statistics is that we do not know the cost of an opti-
mal solution. However, Theorem 14 guarantees that for
certain δ there exists a small coreset and as we have
seen, one can compute this coreset from random sam-
ples. We now define δ(j) = δ∗/2j . We extend our KDS
such that it counts the number of heavy cells for each
δ(j). This can be done without changing the asymp-
totic running time since we only have to check whether
the number of points in a cell becomes more or less
than (1 − ε)δ2i points each time when a point crosses
a cell boundary (at each minor event). Thus we know
how many heavy cells (and hence how many coreset
points) exist for a certain δ(j). We choose the small-
est δ(j) such that the number of heavy cells is at most
34
√
d (1 + log n)(56

√
d)d/εd+1.

D Computing a solution on the coreset

We now describe how to compute a MaxCut from a
weighted set of points. We use an observation from [8]
that an algorithm from [16] for metric MaxCut can be
generalized to weighted MaxCut. The algorithm from
[16] builds on a reduction from metric MaxCut to Max-
Cut in dense weighted graphs [7]. We follow the ap-
proach from [7, 16] and extend it to weighted MaxCut

as proposed in [8]. For every point p let w(p) denote
the weight of point p and let N =

∑
p∈P w(p). We will

consider the point set P ′ of cardinality N where each
point of P is replaced by w(p) copies. We scale the dis-
tances such that

∑
p,q w(p) · w(q) · d(p, q) = N2. For

every point p′ ∈ P ′ we create w′(p′) :=
∑
q′∈P d(p′, q′)

clone vertices p∗i , 1 ≤ i ≤ w′(p′). Between any pair of
clones p∗i , q

∗
j we create an edge with weight d(p′,q′)

w′(p′)w′(q′) .
It was shown in [7] that for this choice of weights the
obtained graph G is a dense weighted graph (the max-
imum weight exceeds the average weight by at most a
constant factor) and that the weight of a MaxCut in
G is equal to the weight of a MaxCut in the original
metric space. For us the following observation will be
crucial. Given two vertices from G we can compute the
weight between them in constant time (after some pre-
processing) without actually constructing G. Following
the approach described in [16] one can round the weights
to integers and apply the MaxCut algorithm from [10]
to find a MaxCut in G. This algorithm samples a set S
of 1/εO(1) vertices and considers all partitions of these
vertices into two sets. For each such partition it cre-
ates an oracle that for any remaining vertex v decides
to which side of the partition it belongs by inspecting
the edges from v to S. This decision is only based on
these edges and a partition of the vertex set into O(1/ε)
different sets. Since each clone of a point p′ is connected
in the same way to S we have to check at most O(1/ε)
different clones to determine the partition of clones. It
has been shown in [10] that for at least one of the par-
titions the oracle gives a (1 − ε)-approximation of the
MaxCut. We can simply compute the cost of the parti-
tions induced by the oracles and take the best one. This
approach can be further improved following [10]. In the
computed solution it may be that clones of the same
point are assigned to both sides of the cut. Following
[16], let fa denote the fraction of clones that is assigned
to one fixed side of the cut. Then we can assign all
clones with probability fa to this side and with proba-
bility (1−fa) to the other side. The expected cost of the
cut will be similar to the cost of the computed cut and
repeating this assignment O(1/ε) times will ensure with
constant probability that the best of these assignments
is only a factor (1−O(ε)) away from the MaxCut. Since
every coreset point corresponds to an area of the plane,
the cut also induces a partition of the plane.

Theorem 21 [8] Given a point set P with integer
weights and of cardinality n one can compute a Max-
Cut of P in Õ(n2 · 21/εO(1)

) time. ut

	Introduction
	Previous results used by our algorithm
	Kinetic data structures for MaxCut
	Conclusions
	Formal arguments from FS05 as used in the paper
	Proof of Lemma 2

	Proof of Lemma 10
	Extracting a coreset from the data structure
	Computing a solution on the coreset

