
Recursive Attribute Factoring

David Cohn
Google Inc.,

1600 Amphitheatre Parkway
Mountain View, CA 94043

cohn@google.com

Deepak Verma
Dept. of CSE, Univ. of Washington,

Seattle WA- 98195-2350
deepak@cs.washington.edu

Karl Pfleger
Google Inc.,

1600 Amphitheatre Parkway
Mountain View, CA 94043

kpfleger@google.com

Abstract

Clustering, or factoring of a document collection attempts to “explain” each ob-
served document in terms of one or a small number of inferred prototypes. Prior
work demonstrated that when links exist between documents in the corpus (as is
the case with a collection of web pages or scientific papers), building a joint model
of document contents and connections produces a better model than that built from
contents or connections alone.

Many problems arise when trying to apply these joint models to corpus at the
scale of the World Wide Web, however; one of these is that the sheer overhead
of representing a feature space on the order of billions of dimensions becomes
impractical.

We address this problem with a simple representational shift inspired by proba-
bilistic relational models: instead of representing document linkage in terms of
the identitiesof linking documents, we represent it by the explicit and inferredat-
tributesof the linking documents. Several surprising results come with this shift:
in addition to being computationally more tractable, the new model produces fac-
tors that more cleanly decompose the document collection. We discuss several
variations on this model and show how some can be seen as exact generalizations
of the PageRank algorithm.

1 Introduction

There is a long and successful history of decomposing collections of documents into factors or
clusters to identify “similar” documents and principal themes. Collections have been factored on
the basis of their textual contents [1, 2, 3], the connections between the documents [4, 5, 6], or both
together [7].

A factored corpus model is usually composed of a small number of “prototype” documents along
with a set of mixing coefficients (one for each document in the corpus). Each prototype corresponds
to an abstract document whose features are, in some mathematical sense, “typical” of some sub-
set of the corpus documents. The mixing coefficients for a documentd indicate how the model’s
prototypes can best be combined to approximated.



Many useful applications arise from factored models:

• Model prototypes may be used as “topics” or cluster centers in spectral clustering [8] serv-
ing as “typical” documents for a class or cluster.

• Given a topic, factored models of link corpora allow identifying authoritative documents
on that topic [4, 5, 6].

• By exploiting correlations and “projecting out” uninformative terms, the space of a fac-
tored model’s mixing coefficients can provide a measure of semantic similarity between
documents, regardless of the overlap in their actual terms [1].

The remainder of this paper is organized as follows: Below, we first review the vector space model,
formalize the factoring problem, and describe how factoring is applied to linked document collec-
tions. In Section 2 we point out limitations of current approaches and introduceAttribute Factoring
(AF) to address them. In the following two sections, we identify limitations of AF and describe
Recursive Attribute Factoringand several other variations to overcome them, before summarizing
our conclusions in Section 5.

The Vector Space Model: The vector space model is a convention for representing a document
corpus (ordinarily sets of strings of arbitrary length) as a matrix, in which each document is repre-
sented as a column vector.

Let the number of documents in the corpus beN and the size of vocabularyM . ThenT denotes
theM × N term-document matrix such that columnj represents documentdj , andTij indicates
the number of times termti appears in documentdj . Geometrically, the columns ofT can also be
viewed as points in anM dimensional space, where each dimensioni indexes the number of times
termti appears in the corresponding document.

A link-based corpus may also be represented as a vector space, defining anN ×N matrixL where
Lij = 1 if there is a link from documenti to j and0 otherwise. It is sometimes preferable to work
with P , a normalized version ofL in whichPij = Lij/

∑
i′ Li′j ; that is, each document’s outlinks

sum to 1.

Figure 1: Factoring decom-
poses matrixA into matri-
cesU andV

Factoring: Let A represent a matrix to be factored (usuallyT or
T augmented with some other matrix) intoK factors. Factoring de-
composesA into two matricesU andV (each of rankK) such that
A ≈ UV .1 In the geometric interpretation, columns ofU contains
theK prototypes, while columns ofV indicate what mixture of pro-
totypes best approximates the columns in the original matrix.

The definition of what constitutes a “best approximation” leads to
the many different factoring algorithms in use today. Latent Seman-
tic Analysis [1] minimizes the sum squared reconstruction error of
A , PLSA [2] maximizes the log-likelihood that a generative model
using U as prototypes would produce the observedA , and Non-
Negative Matrix Factorization [3] adds constraints that all compo-
nents ofU andV must be greater than or equal to zero.

For the purposes of this paper, however, we are agnostic as to the factorization method used — our
main concern is howA , the document matrix to be factored, is generated.

1.1 Factoring Text and Link Corpora

When factoring a text corpus (e.g. via LSA [1], PLSA [2], NMF [3] or some other technique), we
directly factor the matrixT . Columns of the resultingM ×K matrixU are often interpreted as the
K “principal topics” of the corpus, while columns of theK ×N matrixV are “topic memberships”
of the corpus documents.

1In general,A ≈ f(U ,V ), wheref can be any function with takes in the weights for a document and the
document prototypes to generate the original vector.



When factoring a link corpus (e.g. via ACA [4] or PHITS [6]), we factorL or the normalized
link matrix P . Columns of the resultingN × K matrix U are often interpreted as theK “citation
communities” of the corpus, and columns of theK × N matrix V indicate to what extent each
document belongs to the corresponding community. Additionally,U ij , the degree of citation that
communityj accords to documentdi can be interpreted as the “authority” ofdi in that community.

1.2 Factoring Text and Links Together

Many interesting corpora, such as scientific literature and the World Wide Web, contain both text
content and links. Prior work [7] has demonstrated that building a single factored model of the joint
term-link matrix produces a better model than that produced by using text or links alone.

The naive way to produce such a joint model is to appendL or P below T , and factor the joint
matrix: [

T
L

]
≈

[
UT

U L

]
×V . (1)

Figure 2: The naive joint model
concatenates term and link matrices

When factored, the resultingU matrix can be seen as having
two components, representing the two distinct types of infor-
mation in [T ;L ]. Columni of UT indicates the expected
term distribution of factori, while the corresponding column
of UL indicates the distribution of documents that typically
link to documents represented by that factor.

In practice,L should be scaled by some factorλ to control
the relative importance of the two types of information, but
empirical evidence [7] suggests that performance is somewhat
insensitive to its exact value. For clarity, we omit reference to
λ in the equations below.

2 Beyond the Naive Joint Model

Joint models provide a systematic way of incorporating information from both the terms and link
structure present in a corpus. But the naive approach described above does not scale up to web-sized
corpora, which may have millions of terms and tens of billions of documents. The matrix resulting
from a naive representation of a web-scale problem would haveN + M features withN ≈ 1010

andM ≈ 106. Simply representing this matrix (let alone factoring it) is impractical on a modern
workstation.

Work on Probabilistic Relational Models (PRMs) [9] suggests another approach. The terms in a
document are explicit attributes; links to the document provide additional attributes, represented
(in the naive case) as the identities of the inlinking documents. In a PRM however, entities are
represented by their attributes, rather than their identities. By taking a similar tack, we arrive at
Attribute Factoring— the approach of representing link information in terms of theattributesof the
inlinking documents, rather than by their explicit identities.

2.1 Attribute Factoring

Each documentdj , along with an attribute for each term, has an attribute for each other documentdi

in the corpus, signifying the presence (or absence) of a link fromdi todj . WhenN ≈ 1010, keeping
each document identity as a separate attribute is prohibitive. To create a more economical represen-
tation, we propose replacing the link attributes by a smaller set of attributes that “summarize” the
information from link matrixL , possibly in combination with the term matrixT .

The most obvious attributes of a document are what terms it contains. Therefore, one simple way
to represent the “attributes” of a document’s inlinks is to aggregate the terms in the documents that
link to it. There are many possible ways to aggregate these terms, including Dirichlet and more
sophisticated models. For computational and representational simplicity in this paper, however, we
replace inlink identities with a sum of the terms in the inlinking documents. In matrix notation, this



is just [
T

T × L

]
≈

[
UT

UT×L

]
×V . (2)

Figure 3: Representation for
Attribute Factoring

Colloquially, we can look at this representation as saying that a doc-
ument has “some distribution of terms” (T ) and is linked to by doc-
uments that have “some other term distribution” (T × L ).

By substituting the aggregated attributes of the inlinks for their
identities, we can reduce the size of the representation down from
(M +N)×N to a much more manageable2M×N . What is surpris-
ing is that, on the domains tested, this more compact representation
actuallyimprovesfactoring performance.

2.2 Attribute Factoring Experiments

Figure 4: Attribute Factoring outperforms the
content-only and naive joint representations

We tested Attribute Factoring on two publicly-
available corpora of interlinked text documents.
TheCora dataset [10] consists of abstracts and
references of of approximately 34,000 com-
puter science research papers; of these we used
the approximately 2000 papers categorized into
the seven subfields of machine learning. The
WebKBdataset [11] consists of approximately
6000 web pages from computer science depart-
ments, classified by school and category (stu-
dent, course, faculty, etc.).

For both datasets, we factored the content-only,
naive joint, and AF joint representations using
PLSA [2]. We variedK, the number of com-
puted factors from 2 to 16, and performed 10
factoring runs for each value ofK tested. The
factored models were evaluated by clustering
each document to its dominant factor and mea-
suring cluster precision: the fraction of docu-
ments in a cluster sharing the majority label.

Figure 4 illustrates a typical result: adding explicit link information improves cluster precision, but
abstracting the link information with Attribute Factoring improves it even more.

3 Beyond Simple Attribute Factoring

Figure 5: Attribute Factoring can be
“spammed” by mirroring one level
back

Attribute Factoring reduces the number of attributes from
N +M to 2M , allowing existing factoring techniques to scale
to web-sized corpora. This reduction in number of attributes
however, comes at a cost. Since the identity of the document
itself is replaced by its attributes, it is possible for unscrupu-
lous authors (spammers) to “pose” as a legitimate page with
high PageRank.

Consider the example shown in Figure 5, showing two sub-
graphs present in the web. On the right is a legitimate page
like theYahoo!homepage, linked to by many pages, and link-
ing to page RYL (Real Yahoo Link). A link from theYa-
hoo! homepage to RYL imparts a lot of authority and hence
is highly desired by spammers. Failing that, a spammer might
try to create a counterfeit copy of theYahoo!homepage, boost
its PageRank by means of a “link farm”, and create a link from
it to his page FYL (Fake Yahoo Link).



Without link information, our factoring can not distinguish the counterfeit homepage from the real
one. Using AF or the naive joint model allows us to distinguish them based on the distribution
of documents that link to each. But with AF, that real/counterfeit distinction is not propagated to
documents that they point to. All that AF tells us is that RYL and FYL are pointed to by pages that
look a lot like theYahoo!homepage.

3.1 Recursive Attribute Factoring

Spamming AF was simple because it only looks one link behind. That is, attributes for a document
are either explicit terms in that document or explicit terms in documents linking to the current
document. This let us infer that the fakeYahoo!homepage was counterfeit, but provided no way to
propagate this inference on to later pages.

Figure 6: Recursive Attribute Fac-
toring aggregates the inferred at-
tributes (columns ofV ) of inlink-
ing documents

The AF representation introduced in the previous section can
be easily fooled. It makes inferences about a document based
on explicit attributes propagated from the documents linking
to it, but this inference only propagates one level. For example
it lets us infer that the fakeYahoo!homepage was counterfeit,
but provides no way to propagate this inference on to later
pages. This suggests that we need to propagating not only
explicit attributes of a document (its component terms), but
its inferredattributes as well.

A ready source of inferred attributes comes from the factoring
process itself. Recall that when factoringT ≈ U ×V , if we
interpret the columns ofU as factors or prototypes, then each
column ofV can be interpreted as the inferred factor member-
ships of its corresponding document. Therefore, we can prop-
agate the inferred attributes of inlinking documents by aggre-
gating the columns ofV they correspond to (Figure 6). Nu-
merically, this replacesT (the explicit document attributes) in
the bottom half of the left matrix withV (the inferred document attributes):

[
T

V × L

]
≈

[
UT

UV×L

]
×V . (3)

There are some worrying aspects of this representation: the document representation is no longer
statically defined, and the equation itself is recursive. In practice, there is a simple iterative procedure
for solving the equation (See Algorithm 1), but it is computationally expensive, and carries no
convergence guarantees. The “inferred” attributes (IA ) are set initially to random values, which are
then updated until they converge. Note that we need to use the normalized version ofL , namely
P 2.

Algorithm 1 Recursive Attribute Factoring

1: Initialize IA0 with random entries.
2: while Not Convergeddo

3: FactorAt =
[

T
IAt

]
≈

[
UT

UIA

]
×V

4: UpdateIAt+1 = V ×P .
5: end while

3.2 Recursive Attribute Factoring Experiments

To evaluate RAF, we used the same data sets and procedures as in Section 2.2, with results plotted
in Figure 7. It is perhaps not surprising that RAF by itself does not perform as well as AF on

2We would useL andP interchangeably to represent contribution from inlinking documents distinguishing
only in case of “recursive” equations where it is important to normalizeL to facilitate convergence.



the domains tested3 - when available, explicit information is arguably more powerful than inferred
information.

It’s important to realize, however, that AF and RAF are in no way exclusive of each other; when we
combine the two and propagate both explicit and implicit attributes, our performance is (satisfyingly)
better than with either alone (top lines in Figures 7(a) and (b)).

(a) Cora (b) WebKB

Figure 7: RAF and AF+RAF results on Cora and WebKB datasets

4 Discussion: Other Forms of Attribute Factoring

Both Attribute Factoring and Recursive Attribute Factoring involve augmenting the term matrix
with a matrix (call itIA ) containing attributes of the inlinking documents, and then factoring the
augmented matrix:

A =
[

T
IA

]
≈

[
UT

UIA

]
V . (4)

The traditional joint model setIA = L ; in Attribute Factoring we setIA = T×L and in Recursive
Attribute FactoringIA = V ×P . In general though, we can setIA to be any matrix that aggregates
attributes of a document’s inlinks.4 For AF we can replace theN dimensional inlink vector with a
M -dimensional inferred vectord′i such thatd′i =

∑
j:L ji=1 wjdj and thenIA would be the matrix

with inferred attributes for each document i.e.ith column ofIA is d′i. Different choices forwj lead
to different weighting of aggregation of attributes from the incoming documents; some variations
are summarized in Table 1.

Summed function wi IA
Attribute Factoring 1 T ×L
Outdegree-normalized Attribute FactoringPji T ×P
PageRank-weighted Attribute Factoring Pj T× diag(P )×L
PageRank- and outdegree-normalized PjPji T ×diag(P )×P

Table 1: Variations on attribute weighting for Attribute Factoring. (Pj is PageRank of documentj)

3It is somewhat surprising (and disappointing) that RAF performsworsethat the content-only model, but
other work [7] has posited situations when this may be expected.

4This approach can, of course, be extended to also include attributes of theoutlinkeddocuments, but bib-
liometric analysis has historically found that inlinks are more informative about the nature of a document than
outlinks (echoing the Hollywood adage that “It’s not who you know that matters - it’s who knowsyou”).



Extended Attribute Factoring: Recursive Attribute Factoring was originally motivated by the
“FakeYahoo!” problem described in Section 3. While useful in conjunction with ordinary Attribute
Factoring, its recursive nature and lack of convergence guarantees are troubling. One way to simu-
late the desired effect of RAF in a closed form is to explicitly model the inlink attributes more than
just one level.5 For example, ordinary AF looks back one level at the (explicit) attributes of inlink-
ing documents by settingIA = T × L . We can extend that “lookback” to two levels by defining
IA = [T × L ;T × L × L ]. TheIA matrix would have2M features (M attributes for inlinking
documents and anotherM for attributes of documents that linked to the inlinking documents). Still,
it would be possible, albeit difficult, for a determined spammer to fool thisExtended Attribute Fac-
toring (EAF) by mimicking two levels of the web’s linkage. This can be combatted by adding a third
level to the model (IA =

[
T × L ;T × L 2;T × L 3

]
), which increases the model complexity by

only a linear factor, but (due to the web’s high branching) vastly increases the number of pages a
spammer would need to duplicate. It should be pointed out that these extended attributes rapidly
converge to the stationary distribution of terms on the web:T ×L∞ = T × eig(L ), equivalent to
weighting inlinking attributes by a version of PageRank that omits random restarts. (Like in Algo.
1, P needs to be used instead ofL to achieve convergence).

Another PageRank Connection: While the vanilla RAF(+AF) gives good results, one can imag-
ine many variations with interesting properties; one of them in particular is worth mentioning. A
smoothedversion of the recursive equation, can be written as[

T
ε + γ ·V ×P

]
≈

[
UT

UV×L

]
×V . (5)

This the same basic equation as the RAF but multiplied with a damping factorγ. This smoothed
RAF gives a further insight into working of RAF itself once we look at a simpler version of it.
Starting the the original equation let us first remove the explicit attributes. This reduces the equation
to ε + γ · V × P ≈ UV×L × V . For the case whereUV×L has a single dimension, the above
equation further simplifies toε + γ ·V ×P ≈ u×V .

For some constrained values ofε andγ, we getε+(1− ε) ·V×P ≈ V , which is just the equation
for PageRank [12]. This means that, in the absence ofT ’s term data, the inferred attributesV
produced by smoothed RAF represent a sort of generalized, multi-dimensional PageRank, where
each dimension corresponds to authority on one of the inferred topics of the corpus.6 With the
terms ofT added, the intuition is thatV and the inferred attributesIA = V × P converge to a
trade-off between the generalized PageRank of link structure and factor values forT in terms of the
prototypesUT capturing term information.

5 Summary

We have described a representational methodology for factoring web-scale corpora, incorporating
both content and link information. The main idea is to represent link information with attributes of
the inlinking documents rather than their explicit identities. Preliminary results on a small dataset
demonstrate that the technique not only makes the computation more tractable but also significantly
improve the quality of the resulting factors.

We believe that we have only scratched the surface of this approach; many issues remain to be
addressed, and undoubtedly many more remain to be discovered. We have no principled basis for
weighting the different kinds of attributes in AF and EAF; while RAF seems to converge reliably
in practice, we have no theoretical guarantees that it will always do so. Finally, in spite of our
motivating example being the ability to factor very large corpora, we have only tested our algorithms
on small “academic” data sets; applying the AF, RAF and EAF to a web-scale corpus remains as the
real (and as yet untried) criterion for success.

5Many thanks to Daniel D. Lee for this insight.
6This is related to, but distinct from the generalization of PageRank described by Richardson and Domingos

[13], which is computed as a scalar quantity over each of the (manually-specified) lexical topics of the corpus.



References

[1] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis.Journal of the American So-
ciety of Information Science, 41(6):391–407, 1990.

[2] Thomas Hofmann. Probabilistic latent semantic analysis. InProc. of Uncertainty in Artificial
Intelligence, UAI’99, Stockholm, 1999.

[3] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In
Advances in Neural Information Processing Systems 12, pages 556–562. MIT Press, 2000.

[4] H.D. White and B.C. Griffith. Author cocitation: A literature measure of intellectual structure.
Journal of the American Society for Information Science, 1981.

[5] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.Journal of the ACM,
46(5):604–632, 1999.

[6] David Cohn and Huan Chang. Learning to probabilistically identify authoritative documents.
In Proc. 17th International Conf. on Machine Learning, pages 167–174. Morgan Kaufmann,
San Francisco, CA, 2000.

[7] David Cohn and Thomas Hofmann. The missing link - a probabilistic model of document
content and hypertext connectivity. InNeural Information Processing Systems 13, 2001.

[8] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 14, 2002.

[9] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 1300–1309, Stockholm, Sweden, 1999. Morgan Kaufman.

[10] Andrew K. McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning.Information Retrieval, 3(2):127–163,
2000.

[11] T. Mitchell et. al. The World Wide Knowledge Base Project (Available at
http://cs.cmu.edu/ ∼WebKB). 1998.

[12] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[13] Mathew Richardson and Pedro Domingos. The Intelligent Surfer: Probabilistic Combination
of Link and Content Information in PageRank. InAdvances in Neural Information Processing
Systems 14. MIT Press, 2002.


