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Abstract

Clustering, or factoring of a document collection attempts to “explain” each ob-
served document in terms of one or a small number of inferred prototypes. Prior
work demonstrated that when links exist between documents in the corpus (as is
the case with a collection of web pages or scientific papers), building a joint model
of document contents and connections produces a better model than that built from
contents or connections alone.

Many problems arise when trying to apply these joint models to corpus at the

scale of the World Wide Web, however; one of these is that the sheer overhead
of representing a feature space on the order of billions of dimensions becomes
impractical.

We address this problem with a simple representational shift inspired by proba-
bilistic relational models: instead of representing document linkage in terms of
theidentitiesof linking documents, we represent it by the explicit and infeatd
tributesof the linking documents. Several surprising results come with this shift:

in addition to being computationally more tractable, the new model produces fac-
tors that more cleanly decompose the document collection. We discuss several
variations on this model and show how some can be seen as exact generalizations
of the PageRank algorithm.

1 Introduction

There is a long and successful history of decomposing collections of documents into factors or
clusters to identify “similar” documents and principal themes. Collections have been factored on

the basis of their textual contents [1, 2, 3], the connections between the documents [4, 5, 6], or both
together [7].

A factored corpus model is usually composed of a small number of “prototype” documents along
with a set of mixing coefficients (one for each document in the corpus). Each prototype corresponds
to an abstract document whose features are, in some mathematical sense, “typical” of some sub-
set of the corpus documents. The mixing coefficients for a docuchémdicate how the model's
prototypes can best be combined to approxindate



Many useful applications arise from factored models:

e Model prototypes may be used as “topics” or cluster centers in spectral clustering [8] serv-
ing as “typical” documents for a class or cluster.

e Given a topic, factored models of link corpora allow identifying authoritative documents
on that topic [4, 5, 6].

e By exploiting correlations and “projecting out” uninformative terms, the space of a fac-
tored model's mixing coefficients can provide a measure of semantic similarity between
documents, regardless of the overlap in their actual terms [1].

The remainder of this paper is organized as follows: Below, we first review the vector space model,
formalize the factoring problem, and describe how factoring is applied to linked document collec-
tions. In Section 2 we point out limitations of current approaches and introlititeute Factoring

(AF) to address them. In the following two sections, we identify limitations of AF and describe
Recursive Attribute Factoringnd several other variations to overcome them, before summarizing
our conclusions in Section 5.

The Vector Space Model: The vector space model is a convention for representing a document
corpus (ordinarily sets of strings of arbitrary length) as a matrix, in which each document is repre-
sented as a column vector.

Let the number of documents in the corpuseand the size of vocabulary/. ThenT denotes
the M x N term-document matrix such that colummepresents documedt;, andT;; indicates
the number of times terry appears in documest;. Geometrically, the columns @ can also be
viewed as points in ad/ dimensional space, where each dimensiardexes the number of times
termt; appears in the corresponding document.

A link-based corpus may also be represented as a vector space, defiihg anh matrix L where
L;; = 1if there is a link from documentto j and0 otherwise. It is sometimes preferable to work
with P, a normalized version df in whichP,; = L;;/ >, L;/;; that is, each document’s outlinks
sumto 1.

Factoring: Let A represent a matrix to be factored (usudal\or g, gddd  uuu
T augmented with some other matrix) inko factors. Factoring de- | Al ~Hu
composesA into two matricesU andV (each of rankK)) such that

A ~ UV .!Inthe geometric interpretation, columns@fcontains
the K prototypes, while columns & indicate what mixture of pro-
totypes best approximates the columns in the original matrix.

The definition of what constitutes a “best approximation” leads {0
the many different factoring algorithms in use today. Latent Semi@rﬂ—
tic Analysis [1] minimizes the sum squared reconstruction error
A, PLSA [2] maximizes the log-likelihood that a generative mod
using U as prototypes would produce the observkd and Non-
Negative Matrix Factorization [3] adds constraints that all compo-
nents ofU andV must be greater than or equal to zero.

ure 1. Factoring decom-
ses matrixA into matri-
sU andV

For the purposes of this paper, however, we are agnostic as to the factorization method used — our
main concern is howA , the document matrix to be factored, is generated.

1.1 Factoring Text and Link Corpora

When factoring a text corpus (e.g. via LSA [1], PLSA [2], NMF [3] or some other technique), we
directly factor the matrixT' . Columns of the resulting/ x K matrix U are often interpreted as the

K “principal topics” of the corpus, while columns of ti#é x N matrix V are “topic memberships”

of the corpus documents.

YIn general A ~ f(U, V), wheref can be any function with takes in the weights for a document and the
document prototypes to generate the original vector.



When factoring a link corpus (e.g. via ACA [4] or PHITS [6]), we factibor the normalized
link matrix P . Columns of the resulting x K matrix U are often interpreted as tt€ “citation
communities” of the corpus, and columns of thex N matrix V indicate to what extent each
document belongs to the corresponding community. Addition&lly;, the degree of citation that
communityj accords to documeiat; can be interpreted as the “authority” @f in that community.

1.2 Factoring Text and Links Together

Many interesting corpora, such as scientific literature and the World Wide Web, contain both text
content and links. Prior work [7] has demonstrated that building a single factored model of the joint
term-link matrix produces a better model than that produced by using text or links alone.

The naive way to produce such a joint model is to appkrmat P below T, and factor the joint
matrix:
T U
HEEAR o

When factored, the resulting matrix can be seen as having - e
two components, representing the two distinct types of infor- | : X% 2y
mation in[T;L]. Column: of Ut indicates the expected '
term distribution of factoi, while the corresponding column
of Uy, indicates the distribution of documents that typically
link to documents represented by that factor.
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In practice,L should be scaled by some factdrto control £
the relative importance of the two types of information, but™
empirical evidence [7] suggests that performance is somewhat
insensitive to its exact value. For clarity, we omit referencelgc?gure 2. The naive joint model
A in the equations below.
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concatenates term and link matrices
2 Beyond the Naive Joint Model

Joint models provide a systematic way of incorporating information from both the terms and link
structure presentin a corpus. But the naive approach described above does not scale up to web-sized
corpora, which may have millions of terms and tens of billions of documents. The matrix resulting
from a naive representation of a web-scale problem would Bave M features withV ~ 10'°

and M =~ 10°. Simply representing this matrix (let alone factoring it) is impractical on a modern
workstation.

Work on Probabilistic Relational Models (PRMs) [9] suggests another approach. The terms in a
document are explicit attributes; links to the document provide additional attributes, represented
(in the naive case) as the identities of the inlinking documents. In a PRM however, entities are
represented by their attributes, rather than their identities. By taking a similar tack, we arrive at
Attribute Factoring— the approach of representing link information in terms ofattabutesof the
inlinking documents, rather than by their explicit identities.

2.1 Attribute Factoring

Each documentd;, along with an attribute for each term, has an attribute for each other docdment

in the corpus, signifying the presence (or absence) of alink ftpto d;. WhenN = 10'°, keeping

each document identity as a separate attribute is prohibitive. To create a more economical represen-
tation, we propose replacing the link attributes by a smaller set of attributes that “summarize” the
information from link matrixL , possibly in combination with the term matfik.

The most obvious attributes of a document are what terms it contains. Therefore, one simple way
to represent the “attributes” of a document’s inlinks is to aggregate the terms in the documents that
link to it. There are many possible ways to aggregate these terms, including Dirichlet and more
sophisticated models. For computational and representational simplicity in this paper, however, we
replace inlink identities with a sum of the terms in the inlinking documents. In matrix notation, this



is just
T N Ur
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Colloquially, we can look at this representation as saying that a doc-

ument has “some distribution of termsI'() and is linked to by doc- %
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By substituting the aggregated attributes of the inlinks for their
identities, we can reduce the size of the representation down from
(M +N)x N toamuch more manageal&/ x N. What is surpris-

ing is that, on the domains tested, this more compact representation
actuallyimprovesfactoring performance. Figure 3: Representation for

Attribute Factoring

inlink
features

aggréga

2.2 Attribute Factoring Experiments

We tested Attribute Factoring on two publicly- cora articles
available corpora of interlinked text documents. ' ‘ ‘ ‘ ‘
The Coradataset [10] consists of abstracts and
references of of approximately 34,000 com-
puter science research papers; of these we used oal
the approximately 2000 papers categorized |ntc2
the seven subfields of machine learning. Thes 035}
WebKBdataset [11] consists of apprOX|materg_
6000 web pages from computer science depart 03F
ments, classified by school and category (stu_
dent, course, faculty, etc.).
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For both datasets, we factored the content-only, 02} i/ il
naive joint, and AF joint representations using
PLSA [2]. We variedK, the number of com- 5+ % 10 12 4 13
puted factors from 2 to 16, and performed 10 number of factors

factoring runs for each value df tested. The

factored models were evaluated by clusterirjigure 4: Attribute Factoring outperforms the
each document to its dominant factor and meagentent-only and naive joint representations
suring cluster precision: the fraction of docu-

ments in a cluster sharing the majority label.

Figure 4 illustrates a typical result: adding explicit link information improves cluster precision, but
abstracting the link information with Attribute Factoring improves it even more.

3 Beyond Simple Attribute Factoring

Attribute Factoring reduces the number of attributes from

N+ M to2M, allowing existing factoring techniques to scal@pPam Spam spam - gontent gonten) Fonten
to web-sized corpora. This reduction in number of attributes

however, comes at a cost. Since the identity of the document\« l '/ \\ l »/
itself is replaced by its attributes, it is possible for unscrupu-  fake real

lous authors (spammers) to “pose” as a legitimate page with 21 ek

high PageRank. % A

Consider the example shown in Figure 5, showing two sub-  |page page
graphs present in the web. On the right is a legitimate page |FYL RYL
like the Yahoo!'homepage, linked to by many pages, and link-
ing to page RYL (Real Yahoo Link). A link from th¥a-

hoo! homepage to RYL imparts a lot of authority and hen F|g;;ﬁrﬁeﬁttgburtnerlr:;e;orggg ia:vt()e?
is highly desired by spammers. Failing that, a spammer mi K y 9
try to create a counterfeit copy of t@hoo!homepage, boost

its PageRank by means of a “link farm”, and create a link from

it to his page FYL (Fake Yahoo Link).




Without link information, our factoring can not distinguish the counterfeit homepage from the real
one. Using AF or the naive joint model allows us to distinguish them based on the distribution
of documents that link to each. But with AF, that real/counterfeit distinction is not propagated to
documents that they point to. All that AF tells us is that RYL and FYL are pointed to by pages that
look a lot like theYahoo!homepage.

3.1 Recursive Attribute Factoring

Spamming AF was simple because it only looks one link behind. That is, attributes for a document
are either explicit terms in that document or explicit terms in documents linking to the current
document. This let us infer that the fakahoo!homepage was counterfeit, but provided no way to
propagate this inference on to later pages.

The AF representation introduced in the previous section can
be easily fooled. It makes inferences about a document based g ¢.d,d¢,  uuy
on explicit attributes propagated from the documents linking =
to it, but this inference only propagates one level. For exampleZ
it lets us infer that the fak¥ahoo!homepage was counterfeit, +
but provides no way to propagate this inference on to later|
pages. This suggests that we need to propagating not only:
explicit attributes of a document (its component terms), but < =
its inferred attributes as well. e T

~
~

A ready source of inferred attributes comes from the factoring

process itself. Recall that when factoriig~ U x V , if we

interpret the columns Al as factors or prototypes, then eachigure 6: Recursive Attribute Fac-
column ofV can be interpreted as the inferred factor membe#ring aggregates the inferred at-
ships of its corresponding document. Therefore, we can pregbutes (columns oiV') of inlink-
agate the inferred attributes of inlinking documents by aggifg documents

gating the columns oV they correspond to (Figure 6). Nu-

merically, this replace® (the explicit document attributes) in

the bottom half of the left matrix witfy” (the inferred document attributes):

T u
{VXL]z{UVzL}XV. 3)

There are some worrying aspects of this representation: the document representation is no longer
statically defined, and the equation itself is recursive. In practice, there is a simple iterative procedure
for solving the equation (See Algorithm 1), but it is computationally expensive, and carries no
convergence guarantees. The “inferred” attribulgs)(are set initially to random values, which are

thgn updated until they converge. Note that we need to use the normalized vergiomaiely

P-.

Algorithm 1 Recursive Attribute Factoring

1: Initialize I,° with random entries.
: while Not Convergedio

2
3: FactorAt[ T }z{ Ur :|><V
4
5

Iat Up,
UpdateIA'™' =V x P.
: end while

3.2 Recursive Attribute Factoring Experiments

To evaluate RAF, we used the same data sets and procedures as in Section 2.2, with results plotted
in Figure 7. It is perhaps not surprising that RAF by itself does not perform as well as AF on

2We would usdl andP interchangeably to represent contribution from inlinking documents distinguishing
only in case of “recursive” equations where it is important to normdlite facilitate convergence.



the domains testéd when available, explicit information is arguably more powerful than inferred
information.

It's important to realize, however, that AF and RAF are in no way exclusive of each other; when we
combine the two and propagate both explicit and implicit attributes, our performance is (satisfyingly)
better than with either alone (top lines in Figures 7(a) and (b)).
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Figure 7: RAF and AF+RAF results on Cora and WebKB datasets

4 Discussion: Other Forms of Attribute Factoring

Both Attribute Factoring and Recursive Attribute Factoring involve augmenting the term matrix
with a matrix (call itI5 ) containing attributes of the inlinking documents, and then factoring the
augmented matrix:

SRR

The traditional joint model sdty = L ; in Attribute Factoring we sdta, = T x L and in Recursive
Attribute Factorinda =V x P. In general though, we can dg{ to be any matrix that aggregates
attributes of a document’s inlinksFor AF we can replace th& dimensional inlink vector with a
M-dimensional inferred vectat; such thad; = _, w;d; and thenl, would be the matrix

with inferred attributes for each document i€ column ofI, is d;. Different choices fow; lead
to different weighting of aggregation of attributes from the incoming documents; some variations
are summarized in Table 1.

Summed function w; Ia

Attribute Factoring 1 T xL
Outdegree-normalized Attribute FactoringP;; T xP
PageRank-weighted Attribute Factoring| P; T x diag(P) xL
PageRank- and outdegree-normalized | P;P;; | T xdiag(P ) xP

Table 1: Variations on attribute weighting for Attribute Factoring; {s PageRank of documepnf

%It is somewhat surprising (and disappointing) that RAF perfownssethat the content-only model, but
other work [7] has posited situations when this may be expected.

“This approach can, of course, be extended to also include attributes aittimkeddocuments, but bib-
liometric analysis has historically found that inlinks are more informative about the nature of a document than
outlinks (echoing the Hollywood adage that “It's not who you know that matters - it's who kgou/k



Extended Attribute Factoring: Recursive Attribute Factoring was originally motivated by the
“Fake Yahoo! problem described in Section 3. While useful in conjunction with ordinary Attribute
Factoring, its recursive nature and lack of convergence guarantees are troubling. One way to simu-
late the desired effect of RAF in a closed form is to explicitly model the inlink attributes more than
just one leveP. For example, ordinary AF looks back one level at the (explicit) attributes of inlink-
ing documents by settinhy, = T x L. We can extend that “lookback” to two levels by defining

Io = [T xL;T xL x L]. TheI, matrix would have2 features {/ attributes for inlinking
documents and anothéf for attributes of documents that linked to the inlinking documents). Still,

it would be possible, albeit difficult, for a determined spammer to foolExiended Attribute Fac-

toring (EAF) by mimicking two levels of the web’s linkage. This can be combatted by adding a third
level to the modellp = {T xL;T xL?T x LS]), which increases the model complexity by

only a linear factor, but (due to the web’s high branching) vastly increases the number of pages a
spammer would need to duplicate. It should be pointed out that these extended attributes rapidly
converge to the stationary distribution of terms on the viBbx L > = T x eig(L ), equivalent to
weighting inlinking attributes by a version of PageRank that omits random restarts. (Like in Algo.
1, P needs to be used insteadlofo achieve convergence).

Another PageRank Connection: While the vanilla RAF(+AF) gives good results, one can imag-
ine many variations with interesting properties; one of them in particular is worth mentioning. A
smoothedersion of the recursive equation, can be written as

T [ Ur
|:€+'7'VXP:|N|:UV><L:|XV. )

This the same basic equation as the RAF but multiplied with a damping factdhis smoothed

RAF gives a further insight into working of RAF itself once we look at a simpler version of it.
Starting the the original equation let us first remove the explicit attributes. This reduces the equation
toe+v-V xP =~ Uyxr x V. For the case wherEy «r, has a single dimension, the above
equation further simplifieste+~v-V x P =~ ux V.

For some constrained valueseadnd~y, we gete + (1 —¢) - V x P = 'V, which is just the equation

for PageRank [12]. This means that, in the absenc® &fterm data, the inferred attribut&s
produced by smoothed RAF represent a sort of generalized, multi-dimensional PageRank, where
each dimension corresponds to authority on one of the inferred topics of the otk the

terms of T added, the intuition is tha&¥ and the inferred attributeky, = V x P converge to a
trade-off between the generalized PageRank of link structure and factor valiBsfterms of the
prototypesU + capturing term information.

5 Summary

We have described a representational methodology for factoring web-scale corpora, incorporating
both content and link information. The main idea is to represent link information with attributes of
the inlinking documents rather than their explicit identities. Preliminary results on a small dataset
demonstrate that the technique not only makes the computation more tractable but also significantly
improve the quality of the resulting factors.

We believe that we have only scratched the surface of this approach; many issues remain to be
addressed, and undoubtedly many more remain to be discovered. We have no principled basis for
weighting the different kinds of attributes in AF and EAF; while RAF seems to converge reliably

in practice, we have no theoretical guarantees that it will always do so. Finally, in spite of our
motivating example being the ability to factor very large corpora, we have only tested our algorithms
on small “academic” data sets; applying the AF, RAF and EAF to a web-scale corpus remains as the
real (and as yet untried) criterion for success.

SMany thanks to Daniel D. Lee for this insight.
5This is related to, but distinct from the generalization of PageRank described by Richardson and Domingos
[13], which is computed as a scalar quantity over each of the (manually-specified) lexical topics of the corpus.
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