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Abstract

In many classification tasks, the use of expert-labeled

data for training is often prohibitively expensive. The use of

weakly-labeled data is an attractive solution but raises the

problem of label noise. Multiple instance learning, whereby

training samples are “bagged” instead of treated as single-

tons, offers a possible approach to mitigating the effects of

label noise. In this paper, we propose the use of MILBoost

[28] in a large-scale video taxonomic classification system

comprised of hundreds of binary classifiers to handle noisy

training data. We test on data with both artificial and real-

world noise and compare against the state-of-the-art clas-

sifiers based on AdaBoost. We also explore the effects of

different bag sizes on different levels of noise on the final

classifier performance. Experiments show that when train-

ing classifiers with noisy data, MILBoost provides an im-

provement in performance.

1. Introduction

The growth of multimedia data on the Internet provides

great challenges and opportunities for computer vision ap-

plications such as image and video classification. One chal-

lenge is the lack of expert labeled training data, especially

for videos [12, 30]. Obtaining high-quality training data

has always been a central issue for machine learning tasks.

With the growing number of categories (up to hundreds of

thousands) in the spectrum, the problem is more severe than

ever. However opportunities exist: there are weakly labeled

images and videos available, together with a large amount

of unlabeled data. In this paper we focus on the use of

weakly labeled data.

Weakly labeled data on the Internet can come from dif-

ferent sources, e.g., images and videos associated with some

search queries [4, 11, 15], or videos labeled by amateur

raters without full knowledge of the categories in considera-

tion. In weakly labeled data, some instances may be labeled
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with the wrong classes. While it is tempting to employ these

data, handling class label noise becomes a critical issue.

One intuitive way to handle label noise is to pre-process

the data, meaning that data are filtered before feeding to

classifier training. Different strategies have been tried along

this line. For example, for videos and images associated

with a search query, we only keep the top-ranked one. An-

other strategy is to pick data with high confidence scores if

there are pre-trained weak classifiers available. Incremental

learning is used in [15, 19]. Clustering techniques can also

be used to select data consistent with their peers. These

different methods essentially try to pick data with high con-

fidence. However, a good confidence measure is not always

available, and the selected high-confidence data can lead to

distribution bias in the training data. Another way to handle

label noise is post-processing, applied after a round of clas-

sifier training. Training data can be partitioned into smaller

sets, and learned models are combined to alleviate label

noise, as done in [29]. The post-processing strategy may

impose additional computational cost if multiple classes are

needed in classification.

This paper proposes a novel scheme to handle label

noise. It tackles the problem from the center—handling

noise within classifier training. We use the idea of Multiple

Instance Learning (MIL) to tackle label noise. It is naturally

embedded in the classifier training process. It does not suf-

fer from the aforementioned drawbacks of pre-processing or

post-processing approaches. Furthermore, if desired, it can

be easily combined with other strategies since it is inherent

in classifier training.

In our approach, Multiple Instance Learning principle is

applied to learning a boosting-based classifier [28]. The

idea of using MILBoost to alleviate label noise is novel.

While learning is based onMIL principle, the resulting clas-

sifiers preserve all the advantages of AdaBoost. AdaBoost

has been very popular and performs well in multiple appli-

cations. Our approach can be directly applied to any prob-

lems where AdaBoost is used, but with the additional bene-

fit of training label noise being automatically handled.

We choose a large-scale video classification problem as



the application domain to demonstrate the effectiveness of

our algorithm. One reason for choosing videos is that expert

labels for videos are especially time consuming to obtain

due to the nature of online videos[24, 30]. Our work is one

of the first efforts (if not the first) in handling labeling noise

in such a large scale video classification system.

Worthy of mention is that attribute (or feature) noise and

class label noise are two sources of noise for a learning al-

gorithm [31]. There has been much attention on reducing

feature noise, such as using principal component analysis

(PCA), but less systematic work in handling label noise.

Our work sheds new lights in this direction.

This paper is organized as follows. Related works are

reviewed in Section 2. Section 3 presents our proposed

scheme for reducing label noise using MILBoost. In Sec-

tion 4, we describe a large scale video taxonomic classifica-

tion system, where our approach for handling label noise is

applied. Section 5 depicts our data collection. In Section 6,

experiments are performed using both synthetic noise and

a noisy training set to illustrate real-world challenges. Fi-

nally, we conclude and discuss possible directions for future

work in Section 7.

2. Related Work

2.1. Multiple Instance Learning

In Multiple Instance Learning (MIL), samples are not

treated as positive or negative singletons, but instead

grouped together into “bags”. Bags are labeled positive if

they contain at least one positive sample or negative oth-

erwise. MIL has been successfully applied to computer

vision tasks including face detection [13, 28], pose detec-

tion [2], image categorization [7], segmentation [25], and

tracking [3].

Andrews and Hofmann [1] propose the use of linear pro-

gramming in AdaBoost in an MIL approach to reduce the

effects of label noise. However, as the authors remark, “Our

current implementation could not handle large data sets”.

That is because it uses a linear programming step in the

inner loop of the boosting algorithm, thus making it pro-

hibitively slow with large data sets.

2.2. Removing Label Noise

The increasing popularity of using weakly-labeled data

has inspired works in handling label noise in training sets.

One way to handle label noise is to apply Latent Dirichlet

Allocation (LDA) [5], probabilistic Latent Semantic Analy-

sis (pLSA) [14, 23] or its extensions, and remove unrelated

latent topics [4, 11]. However, it faces the issue of how to

select good topics and how many topics to keep. In [11], an

extra validation set is used to select one best topic for clas-

sification. The choice of keeping only one topic is heuris-

tic/empirical, and it may limit the benefits of latent topic

models. In [4], the relevant topics are selected manually.

Incremental learning is used in [15, 19] to select relevant

training samples out of noisy candidates. As noted in [19]

and also observed in our own experience, a brute-force ap-

plication of incremental learning is likely to select samples

similar to previous rounds, and therefore resulting in biased

models. This issue is addressed in [19] by selecting image

samples with high entropy with respect to the latent topics,

in addition to the high-likelihood criterion.

We don’t intend to claim our proposed method is supe-

rior to the above work. Rather, it is a new approach to tackle

the label noise problem from a different perspective, at dif-

ferent stages of classifier training. Our method has simi-

lar spirit to [26] in applying the idea of Multiple Instance

Learning to classifier training. [26] can be looked at as

an augmentation of SVM, but ours is a boosting based ap-

proach. We also study the problem of video classification,

as opposed to image classification.

Another attempt to remove noise in boosting is proposed

in [16], where samples with very high weights are regarded

as noise and removed from the training set. While intuitive

in concept, as admitted by the authors, the effectiveness of

the method depends on the selection of threshold for remov-

ing samples. In practice, the method is very brittle and im-

practical with the large variability of video data. We show

our experiments using [16] in Section 6.1.

3. MILBoost For Label Noise Removal

We use Multiple Instance Learning in a boosting frame-

work to handle label noise. In most MIL applications to

computer vision, the bags are formed very naturally. For

example, in object recognition, labels are associated to an

image. The presence of the object is known while its exact

location within the image is not. Each bag then contains all

the segments within the image. MIL is used to figure out

which segment corresponds to the object during training. In

a object tracking problem, each bag will contain the win-

dows around all possible locations to where the object has

moved. Again, MIL is used to obtain the best location.

In the problem of label noise removal, training examples

are given as independent singletons. Some of the training

examples are correctly labeled, while others are not. Each

positive MIL bag is formed by multiple positive training

examples, randomly and uniformly selected from the posi-

tive set. The negative examples are singletons, or in other

words, the negative MIL bags have a size of 1. The reason
for this asymmetry is that in most practical applications, the

noise level in the negative set is negligible. Imagine the

problem of learning a classification model for the animal

“lamb”. The first two pages of results from Google Image

Search using the query “lamb” contain only 36 real pictures
of lamb, out of a total of 60 images. The noise level in the

positive set is thus 40%. On the other hand, the chance of



any random image from the Web containing a picture of a

“lamb” is minimal. A high level overview of our approach

is depicted in Figure 1.

We follow the MILBoost formulation of Viola et al [28].

Each example resides in a bag. We use the index i to repre-

sent the bags and j for samples within the bag. The proba-

bility of an example being positive is the logistic function:

pij =
1

1 + exp(−yij)
(1)

where yij = H(xij). H(xij) is the strong classifier and is a
weighted sum of weak classifiers H(xij) =

∑
t λtht(xij).

We adopt the Noisy OR model for each bag. The proba-

bility that a bag is positive is given by

pi = 1−
∏

xij

(1− pij) (2)

This Noisy OR model essentially means that as long as one

sample in each bag is a true positive, the bag will be posi-

tive. In other words, even if all other samples in the bag are

mislabels, the effect of noise is minimized in classifier train-

ing. For example, if we know that there is a 50% chance a

positive training sample is mislabeled, using a bag size of 2
reduces noise level to 25%1. Using bag size of 4, 6, and 8

would reduce noise levels to 6.2%, 1.6%, and 0.4% respec-

tively.

We minimize the negative log likelihood:

L(H) = −

∑

i∈+

log(pi)−
∑

i∈−

log(1− pi) (3)

of all the samples.

In many applications, there could be an imbalance in

the number of positive and negative samples. It is usu-

ally much easier to gather negative training samples than

positive ones. For example, there are fewer videos about

“Comics & Animation” than otherwise. To tackle this im-

balance, we weigh the two terms in Eq. 3 differently and

redefine the loss to be

L(H) = −α
∑

i∈+

log(pi)−
∑

i∈−

log(1− pi) (4)

Following standard derivation of boosting weights, the

weight of sample j in positive bag i is

w+

ij = α
1 − pi

pi
pij (5)

The weight for samples in the negative bags is

w−

ij = pij (6)

1This assumes the samples in each bag are uncorrelated and the misla-

beling probability is independent.

Figure 1. Overview of our approach. True positive (blue +) and

mislabeled positive (red+) sample videos are grouped as positive

bags, while negative samples (red −, including mislabeled nega-

tive samples, blue −) are kept as negative singletons. Together,

they are used to train a MILBoost model.

Each boosting round is to find the weak classifier h(x) that
minimizes

∑

i∈+

∑

j

h(xij)w
+

ij −

∑

i∈−

∑

j

h(xij)w
−

ij (7)

The resulting strong classifier is H(x) =
∑

λtht(x). We

find λt using line search to minimize L(H + λtht).
In our implementation, α is computed so that the total

initial weights of all positive samples is equivalent to the

total initial weights of the negative ones. Our line search

algorithm is n-ary search followed by parabolic fitting.

From a practical point of view, the input samples and

model output format are exactly the same as standard Ad-

aBoost. Moreover, the training and testing speed of our sys-

tem is essentially the same as standard AdaBoost. Training

each category requires on the order of minutes after features

are precomputed. The time to classify a video is the same as

Adaboost classifiers. In our implementation, with features

pre-computed, classifying one video takes less than 1 mil-

lisecond. The speed for video feature extraction (Section

4.2) is near-real-time on a modern PC.

4. Video Classification

We demonstrate the effectiveness of our approach on

a large-scale video taxonomic classification system. The

video classification system assigns categories to videos

from a pre-defined taxonomy [24]. The taxonomy is a tree

of depth-5, with 1037 nodes. Each node corresponds to a

category. A binary classifier is trained for each category

in the taxonomy. We adopt the hierarchical one-against-all

approach. For a given category, the positive samples are

those belonging to the category itself and its descendants;

the negative samples are the rest excluding those belong-

ing to the ancestor categories. Classification decisions are

based upon results from individual classifiers. Multiple la-

bels (categories) can be assigned to one video. Text-based



features and video-content-based features are used for clas-

sification. A boosting-based classifier with decision stumps

as weak classifiers is used for each binary classification.

4.1. TextBased Feature Extraction

There are two steps in text-feature extraction. In the

first step, weighted text clusters are obtained from video

meta-data (title, description and keywords) through Noisy-

Or Bayesian Networks [21]. In the second step, pre-

trained (using labeled web documents) text-based linear

SVM ([10]) classifiers are applied to weighted text clus-

ters and a classification score is obtained for each category.

These scores are concatenated into a vector and treated as

text features [24]. The second step exploits the knowledge

embedded in the text-based classifiers learned from labeled

web documents, therefore the features obtained are more

effective, especially when the number of training videos is

small [24].

4.2. VideoContentBased Feature Extraction

Video content-based visual and audio features are ex-

tracted from each video. Visual features include histogram

of local features, color features, texton histograms, edge

features, face features, and motion features.

Histograms of oriented gradients (HOG) feature: At

each pixel location, we extract a 1800-dimensional feature

descriptor, which is the concatenation of 18-dimentional-

HOG [8] in a 10 by 10 surrounding window. The raw de-

scriptors are then collected into a bag-of-words representa-

tion by quantizing them using a randomized decision tree

similar to [22]. This tree is binary with 10 levels, but not

full, and has 647 leaves. The bags-of-words accumulate

across all frames, at a certain temporal down-sampling rate.

The following features are also computed for each frame

(with down-sampling): Hue-Saturation color histogram,

texton histogram [18] with vocabulary size 1000, edge fea-

tures including fraction of edge pixels and edge direction

histogram, and face features [27] with the number of faces

and the ratio of largest face area to the image area. Vector

quantization is performed on each type of feature descrip-

tors, and histograms are accumulated throughout the video.

Cuboid interest point detector [9] is used to extract mo-

tion features. Spatio-temporal volumes are extracted around

the detected interest points. Two types of descriptors are

used to represent each cuboid. First, normalized pixel

values are concatenated and principal component analysis

(PCA) is applied to reduce the dimensionality to 256. Sec-

ond, each slice of the cuboid is split into 2 by 2 cells, and

all HOG descriptors of these cells in the cuboid are con-

catenated into a vector. Similar to the first type, PCA is

applied. Both descriptors are further quantized using their

corresponding codebooks.

In addition to visual features, the following two audio

features are extracted: mel-frequency cepstral coefficients

(MFCC) [6] and stabilized auditory images (SAI) [20].

5. Data

We have obtained training data by asking human raters

to assign categories to videos. The raters are given a video

and asked to provide labels after watching (part of) it. There

are two types of raters: experts and amateurs.

5.1. Expert Raters

Expert raters have extensive training and familiarity with

the taxonomy. Their task is to label videos through di-

rect text input, i.e., to pick one or more labels out of the

whole taxonomy of 1037 categories. They have demon-

strated high inter-rater agreement and are thus regarded as

experts. These data are referred to as ground-truth videos

since they are of the highest quality, with little or no label

noise. All the testing data in our experiments come from

this ground truth set. The disadvantages of collecting data

using experts are obvious: it is extremely time-consuming

and expensive.

5.2. Amateur Raters

Due to the difficulty in obtaining ground-truth videos, we

explore using amateur raters to provide video labels through

a Mechanical Turk-like environment. These raters have no

prior training and are not familiar with the taxonomy. The

labeling task is reduced to ten binary questions whereby

each rater is asked to indicate whether or not a given cat-

egory applies to the video. The raters have the option of

choosing none. These candidate categories are selected us-

ing text-based classifiers discussed in Section 4. The ten

most confident categories are taken, randomly shuffled, and

presented to the raters.

We ask five raters to independently label each video, and

we require at least 3 raters to agree on a label before retain-

ing it. In order to examine the labeling accuracy, a valida-

tion experiment has been performed where 1,000 ground-

truth videos are presented to amateur raters to label. The

results of the validation experiment are summarized in Ta-

ble 1. From Table 1, (1 - precision) is roughly the percent-

age of noisy labels. Thumbnails of sample videos from this

validation experiment are shown in Figure 2.

Amateur raters have advantages in time, speed and cost.

The amateur raters are able to label 25922 videos within

one month, whereas the experts require approximately one

year to label 10528 ground-truth videos. Amateur raters re-

quire little or no supervision, and no training beyond the

brief instructions presented to them as part of the labeling

user interface. The experts, on the other hand, receive con-

siderable training and practice in order to become familiar

with the taxonomy. The expert raters usually have to be paid

higher than the amateur raters as well.



EdbGy-fkk4E 16FeMFD4uxA k2W4-0qUdHY lDTVLY6oi0w WYegt3eyW w PBIjn8NHV-I

S804X8mMy Y Up13DWbLARs ISHC4yve8GA XNxxnj50h0Q DzYeaWD9Zo8 Ijg9Ivw7pEk

Figure 2. Sample videos from amateur raters. Those with blue frames are mislabeled compared to ground-truth labels. The text string

below each video thumbnail is its VIDEO ID. The video can be watched via link http://www.youtube.com/watch?v=VIDEO ID. Videos

in the first row are labeled as /Arts & Entertainment/Music & Audio/Pop Music by amateur raters, and videos in the second row are

labeled as /Autos & Vehicles/Custom & Performance Vehicles. Ground truth labels for the mislabeled videos are as follows, EdbGy-

fkk4E: /Arts & Entertainment/Music & Audio/Urban & Hip-Hop/Rap & Hip-Hop, /Arts & Entertainment/Music & Audio/Dance & Elec-

tronic Music; 16FeMFD4uxA: /Arts & Entertainment/Music & Audio/Urban & Hip-Hop/Soul & R&B, /Hobbies & Leisure/Special Oc-

casions/Holidays & Seasonal Events/Christmas; lDTVLY6oi0w: /Arts & Entertainment/Movies/Musical Films, /People & Society/Kids

& Teens; PBIjn8NHV-I: /Arts & Entertainment/Music & Audio/Rock Music, /Hobbies & Leisure/Special Occasions/Holidays & Seasonal

Events/Christmas; Up13DWbLARs: /Autos & Vehicles/Vehicle Brands/Buick, /Autos & Vehicles/Vehicle Shows, /Shopping/Luxury Goods;

XNxxnj50h0Q: /Autos & Vehicles/Vehicle Brands/Honda.

Depth # Labels Precision Recall F-score

1 1762 74 55 63

2 1871 66 42 51

3 1214 61 36 45

4 177 59 39 46

5 11 83 45 58
Table 1. Performance of amateur raters when asked to label 1000

ground-truth videos. Each video is labeled by 5 raters indepen-

dently, and only labels with at least 3 raters agreed are retained.

We believe the high precision at depth 5 is mainly due to the small

sample size.

6. Experiments

Section 5 describes how our data is obtained. There are

10528 videos labeled by expert raters and 25922 videos la-
beled by amateur raters. The candidate videos are randomly

selected from YouTube videos. Experiments in Section 6.1

uses 80% of the expert labeled videos as training data, the

other 20% as testing data. Experiments in 6.2 use data from

amateur raters as training data, and data from expert raters

for testing.

6.1. Effect of Noise on Video Classification

We use the expert labeled data for this experiment. To

study the effect of noise on classification performance, we

switch some of the negative training samples to be positive

training samples. We create data sets with 0%, 10%, 20%,

50%, and 80% noise in the positive set. In most practical

applications, the noise level in the negative set is usually

negligible. Therefore, we do not add noise to the negative

set. We also investigate the effect of different bag sizes,

namely, 2, 4, and 8.

Figure 3 shows the results for the categories “Arts & En-

tertainment”, “Pop Music”, and “Pets & Animals”. These

categories belong to different depth in the taxonomy and

have large differences in the number of ground truth videos.

We compare MILBoost with different bag sizes to standard

AdaBoost. In low noise levels (0% and 10%), MILBoost

performs comparably to AdaBoost, particular for small bag

sizes (2 or 4). The advantage of MILBoost is significant

when noise level is high. Similar improvements are ob-

served for categories with different number of ground truth

labels.

We also compare the performance using the standard

equal error rate, i.e., the error rate at which false positive

rate equals to false negative rate. The equal error rates aver-

aged over 77 categories trained are shown in Table 2. (Each
of these 77 categories has at least 100 ground truth videos.)
In essence, there is no significant performance difference at

low noise levels (0% and 10%). At 20% noise or above,

MILBoost shows performance gain. At 80% noise, the gain

is more than 5% with bags of 8.

Table 3 shows the equal error rate of a handful of ran-

domly selected categories at different depth levels of the

taxonomy. As expected, there is a lot of variations in per-

formance gain/loss across categories. Overall, at low noise

levels (below 10%), there is either no difference or a slight

degradation with MILBoost. At higher noise levels, MIL-

Boost clearly wins.

The amount of noise we experiment with might seem

excessive (50% or 80%). However, if we want to take ad-

vantage of the large amount of image or video data avail-

able on the Internet, this amount of noise level is to be ex-
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Figure 3. ROC curves on the video categorization problem. The three rows are results for categories “Arts & Entertainment” (5235 ground

truth videos), “Pop Music” (685 videos), and “Pets & Animals” (90 videos) respectively. We compare the performance of MILBoost with

different bag sizes to AdaBoost. Each column show the performance at different noise levels: 0%, 10%, 50%, and 80%.

Noise AB MB (2) MB (4) MB (8)

0% 13.5% 14.0% 14.6% 14.1%

10% 14.5% 15.3% 14.8% 14.0%

20% 15.4% 15.2% 15.1% 13.9%

50% 17.5% 17.6% 16.3% 15.5%

80% 21.9% 21.0% 18.9% 16.7%
Table 2. Performance comparison of AdaBoost (AB) and MIL-

Boost (MB) averaged over all 77 trained categories. We use the

standard equal error rate for comparison (the lower the better). As

can be seen, MILBoost compares favorably with AdaBoost. The

performance gain is significant when noise level is high, achieving

over 5% gain at 80% noise with bag size of 8.

pected. It is observed by Fergus et al [11] that images ob-

tained from Google Image Search typically contain upward

of 85% label noise. In general, for any large scale classi-

fication problem with thousands or millions of categories,

collecting clean, noise-free data is impractical.

The effect of noise on the video taxonomy classification

task is also evaluated using the method proposed in [16].

[16] treats samples with weights larger than a threshold as

noise and discards them. We follow the authors’ suggestion

of exhaustively trying thresholds between 3 and 20 and use

cross validation to select the appropriate value. However,

the method is very brittle. Even at 0% noise, in all but 2

categories, a majority of the positive samples are eventually

treated as noise and discarded, resulting in very poor clas-

sification performance. We believe this is due to the large

variability of the video data.

6.2. Experiments on Realworld Noisy Data

In this section, we demonstrate the effects of MILBoost

on a real-world application with a naturally noisy training

set. Video data from amateur raters (Section 5.2) are used

as training set. As shown in Table 1, the data are quite



Noise AB MB (2) MB (4) MB (8)

Pets & Animals (1)

0% 8.9% 5.1% 11.6% 9.0%

10% 9.5% 11.6% 7.3% 5.0%

50% 8.0% 13.3% 8.3% 6.7%

80% 18.3% 15.0% 14.1% 15.0%

Games (1)

0% 11.7% 13.4% 15.3% 11.2%

10% 14.0% 12.7% 13.1% 12.3%

50% 19.9% 17.0% 13.8% 12.6%

80% 18.4% 18.9% 18.6% 16.7%

Custom & Performance Vehicles (2)

0% 4.3% 7.1% 4.8% 3.7%

10% 7.2% 8.4% 6.0% 4.3%

50% 8.8% 8.0% 6.5% 7.2%

80% 13.0% 15.8% 10.6 % 6.5%

Pop Music (3)

0% 19.4% 19.5% 18.0% 19.9%

10% 18.9% 18.0% 19.1% 19.5%

50% 21.6% 18.5% 18.6% 18.4%

80% 24.5% 25.4% 22.9% 21.1%
Table 3. Performance Comparison of AdaBoost (AB) and MIL-

Boost (MB) on 4 randomly selected categories. We use the equal

error rate to compare the performance. At 0 to low noise levels,

MILBoost does not improve the performance by much, if at all.

At higher noise levels, MILBoost has a clear advantage. These

categories are chosen so that they span different depth levels in the

taxonomy and also different number of ground truth videos. For

the 4 categories, the number of positive ground truth videos are

90, 390, 250, 685 respectively.

noisy, up to 40% error. From these data, there are 224 cat-

egories with at least 40 videos. MILBoost and AdaBoost

based classifiers are trained for those categories. MILBoost

classifiers are trained using 2, 4, 6 and 8 samples per bag.

Evaluation is performed on ground-truth video data from

Section 5.1. Performance is quantified by the standard defi-

nitions of precision, recall and F-score.

Figure 4 gives an overview of classifier performance.

Each data point in Figure 4 is the F-score averaged over cat-

egories in the corresponding taxonomy depth level. The av-

erage performance of the classifiers trained usingMILBoost

with 8 samples per bag exceeds that of all others trained us-

ing noisy data, including AdaBoost.

To get an in-depth look, we examine the classification

performance for four categories: “Games”, “Pets & Ani-

mals” (both depth-1), “Vehicle Brands” (depth-2), and “Pop

Music” (depth-3). The changes in F-score are shown in Fig-

ure 5. From our validation experiments evaluating rater ac-

curacy (Section 5.2), we can get a sense of the amount of

noise present in these categories. Three of the categories

examined (“Games”, “Pets & Animals”, “Vehicle Brands”)
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Figure 4. Comparison of classification performance between MIL-

Boost with bag sizes 2, 4, 6, 8, as well as AdaBoost.
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Figure 5. Comparison of classification F-score between MILBoost

with bag sizes 2, 4, 6, 8, as well as AdaBoost for four categories.

Depths of categories are shown in parentheses.

are relatively clean with high precision in the validation ex-

periments (80%, 77%, 75% respectively), but “Pop Mu-

sic” had a very high amount of label noise with a preci-

sion of 23%. Sample video thumbnails from this category

are shown in the first row of Figure 2. As described in

the caption of Figure 2, videos from categories like /Arts

& Entertainment/Music & Audio/Urban & Hip-Hop/Rap &

Hip-Hop (the top left video, with VIDEO ID being EdbGy-

fkk4E) can be mislabeled as category /Arts & Entertain-

ment/Music & Audio/Pop Music. The significant increase in

performance through the use of MILBoost over AdaBoost

for this category reinforces our observation that MILBoost

offers significant performance gains when applied to sets

containing high amounts of noise.

7. Conclusion

Label noise is a part of life in classification problems. It

is amplified when data from the Internet are used. In this

paper, we propose a method to reduce the effect of label

noise within classifier training using principles of Multiple

Instance Learning. In particular, we use the formulation of



MILBoost and put multiple positive samples in a bag. We

systematically analyze the effect of bag size on classifica-

tion performance through artificial noise generation. Our

algorithm works exceptionally well in the presence of large

amount of noise. We also demonstrate a practical appli-

cation where we use amateur raters to collect lots of noisy

data. Our proposed algorithm shows improved performance

over traditional learning by AdaBoost.

There are several directions that we will continue to ex-

plore. First, we will study how to automatically determine

bag sizes. As our experiments have shown, a large bag size

(8) improves the classification performance at high noise

levels, while it does not have a significantly adverse effect

on low noise levels. However, on some problems where

noise is not sigificant, it is possible that bigger bags will

descrease classification performance. Cross-validation is a

possible solution for bag size selection. Second, there are

more sources of training videos. Videos from text classi-

fiers (Section 4.1) can be used directly as noisy training ex-

amples. Third, we will investigate the use of multiple bag

sizes in the same classifier learning system. Different data

sources, or videos with different levels of rater agreement,

have different noise levels. Different bag sizes can take ad-

vantage of the varying noise levels. Fourth, we will explore

using other MIL loss functions in the boosting framework.

In this paper, the Noisy OR model is used. Other mod-

els, such as average probability, or the ISR criterion in [17],

might yield better performance.
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