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Abstract

We propose a novel framework for automatic saliency estima-
tion in natural images. We consider saliency to be an anomaly
with respect to a given context that can be global or local. In
the case of global context, we estimate saliency in the whole im-
age relative to a large dictionary of images. Unlike in some prior
methods, this dictionary is not annotated, i.e., saliency is assumed
unknown. In the case of local context, we partition the image in-
to patches and estimate saliency in each patch relative to a large
dictionary of un-annotated patches from the rest of the image. We
propose a unified framework that applies to both cases in three
steps. First, given an input (image or patch) we extract k nearest
neighbors from the dictionary. Then, we geometrically warp each
neighbor to match the input. Finally, we derive the saliency map
from the mean absolute error between the input and all its warped
neighbors. This algorithm is not only easy to implement but also
outperforms state-of-the-art methods.

1. Introduction
If you show a group of people the image in Fig. 1(a) and

ask them to annotate parts of it that they consider salient (s-

cale 0 to 1), you will likely get a distribution of saliency s-

cores that is roughly consistent with the images in Fig. 1(b)–

(d). If, however, you first show them the images in Fig. 1(e)

and then ask them to annotate parts of Fig. 1(a) that they

consider salient in relation to the images of Fig. 1(e), very

likely the “missing leg” will stand out as the most salient

part, as shown in Fig. 1(f). We have developed a simple u-

nified framework for image saliency estimation that covers

both of these scenarios and more.

Our thesis is that saliency is meaningful only in relation

to a context and work to-date has implicitly aimed to cap-

ture what may be termed as intrinsic saliency, i.e., saliency

in the context of local image structure (even when based

on a large dictionary of images). We hold that regions of

an image that should be considered salient in relation to a

dictionary of images or local image patches are not those

Figure 1. For an input image (a), traditional saliency estimation

algorithms, such as those by Itti98 [14] (b) and Hou08 [10] (c),

only aim to capture what may be termed as intrinsic saliency. In

contrast, the proposed algorithm can produce not only an intrin-

sic saliency map (d) in the local context of a dictionary of image

patches but also an extrinsic saliency map (f) in the global context

of a dictionary of images containing only two-legged humans (e).

which occur in great abundance within the dictionary but

precisely those which are unusual. Thus a salient region is

a region which is anomalous relative to a dictionary. We

are, in essence, advocating a definition of saliency which

not only encompasses the implicit traditional notion as a

special case, namely when the context is local image struc-

ture, but which significantly expands the scope and utility

of the traditional notion as illustrated by the saliency of the

missing leg (Fig. 1(f)) of the one-legged man (Fig. 1(a)) in

a universe of two-legged men (Fig. 1(e)).

Our proposed saliency estimation algorithm consists of

three steps as illustrated in Fig. 2. In the global (extrin-

sic) case, we estimate saliency in the whole image: the in-

put image is evaluated for saliency against a dictionary of

images, that has not been annotated for presence or loca-

tion of saliency, unlike in [20]. In the local (intrinsic) case,
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Figure 2. Block diagram of the proposed (extrinsic) saliency esti-

mation algorithm based on 3 steps: (1) kNN search to retrieve k
dictionary elements similar to the input, (2) geometric warping to

align neighbors to the input, (3) anomaly estimation.

we estimate saliency on a patch-by-patch basis: each input

patch in an image is evaluated for saliency against the dic-

tionary of remaining patches from the same image or part-

s thereof. Depending on the size and composition of the

dictionary, immediate-neighborhood saliency or full-image

saliency can be estimated.

In both local and global cases, first a kNN search vis-à-
vis the input (patch or image) is executed on the dictionary.

The extracted k neighbors have a visual appearance close

to that of the input but size, shape and position of object-

s may significantly differ among them. We address this in

the second step by geometrically warping each neighbor to

match the input. The warped neighbors are likely to exhib-

it similar background (luminance, color, location) to that in

the input since the kNN search is based on global image

properties; as the background is usually dominant in an im-

age in terms of size, it provides a strong bias in the kNN

search. However, most foreground areas are small and like-

ly to vary among neighbors if the context dictionary is suffi-

ciently rich. Most of them will also differ from foreground

areas in the input. We leverage this in the third step by com-

puting the mean absolute error between the warped neigh-

bors and the input. The saliency map of the input is then

assumed to be a normalized version of this error. Due to

the similarity of the background between the input and the

warped neighbors and, at the same time, likely variability

of the foreground among the warped neighbors, the salien-

cy is naturally collocated with large mean errors. In other

words, it is anomalous with respect to the foregrounds in

the warped neighbors.

We would like to point out that in one specific instanti-

ation of our framework, we use a dictionary of 100 million

online images to infer the global context. We solve the obvi-

ous issue of kNN search complexity by leveraging massive

parallelism.

Despite its simplicity, our framework performs very

well. Both the local- and global-context variants outperfor-

m most of the state-of-the-art saliency estimation methods

on Berkeley [21] and MSRA [19] databases. Furthermore,

a combined local/global variant performs even better out-

performing all of the methods we have tested.

In summary, the contributions of this paper are twofold:

1. We develop a novel algorithmic framework for salien-

cy estimation based on kNN search and warping by us-

ing either local context (intrinsic to the image) or glob-

al context (extrinsic to the image), or a combination of

the two.

2. In the global context, we leverage the wealth of unan-

notated image and video data available on-line, for ac-

curate saliency estimation.

The rest of the paper is organized as follows. In Sec-

tion 2, we review related work on saliency estimation. In

Section 3, we describe our method in detail. Experimental

results and comparisons with other methods are presented

in Section 4. We conclude with a discussion in Section 5.

2. Related work
The process of visual attention has been extensively s-

tudied in psychology, neural systems, and computer vi-

sion (e.g., [15, 28]). At the highest level, two mechanism-

s are usually considered when explaining visual attention

in humans: bottom-up, driven by saliency, and top-down,

volitionally-controlled attention bias [22]. Current compu-

tational models of visual attention are primarily based on

the bottom-up mechanism, i.e., saliency maps, and have

been inspired by the work of Koch and Ullman [15].

Most approaches to the modeling and localization of vi-

sual attention to date [1, 12, 13, 14, 17, 20, 29] are based

on a feature integration framework [27]. Typically, these

approaches consist of three stages. First, various low-level

visual features, such as luminance, color, edge orientation-

s and texture patterns are extracted from the image, often

at multiple scales. Then, “activation maps” are computed

from the extracted visual features, for example, by means

of a center-surround operation that emulates the visual re-

ceptive fields [14], Shannon’s self-information measure that

is inspired by the primate visual cortex [5], or biologically

plausible graph-based random walks [9]. Finally, normal-

ization and fusion (linear or non-linear) of multiple “activa-

tion maps” is performed to yield a saliency map.

However, the semantic content of a scene, co-

occurrences of objects and task constraints have been shown

to play a key role in visual attention bias [2, 6, 4, 16]. Ob-

servers can be implicitly cued to a target location by global

properties of the image, like background color or texture

[4, 16, 23]. Different from feature integration model, con-

textual information can also be used for saliency estima-
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tion, for example by exploiting the relationship between co-

occurring objects in real-world environment [22]. Clearly,

context plays a pivotal role in human visual attention.

The performance of bottom-up methods is strongly de-

pendent on the specific choice of features. In an attempt to

address this dependence, Liu et al. [19] have proposed to

solve the feature selection problem by means of training on

a large accurately-labeled image database. Clearly, this use

of context is supervised and thus not scalable.

Oliva et al. [26] have proposed a computational mod-

el of attention guidance that combines bottom-up saliency

with top-down bias provided by viewers in a supervisory

manner. They have shown that context can provide a low-

complexity object detection by pre-selecting relevant image

regions. However, their experimental results were limited

to a very specific class of objects, e.g., pedestrians.

Context has been recently emphasized in saliency detec-

tion by Goferman et al. [7]. The proposed model com-

bines immediate and distant contexts (neighboring versus

far-away patches) by weighing a color difference metric

with the inverse of a distance metric. Consequently, a patch

with distinct color, as compared to its neighbors, is more

salient than it is against distant patches (with the same col-

ors as the neighbors). Note that in this case the comparisons

are performed only within the image itself.

A method proposed by Boiman and Irani [3], like our

method, treats saliency as anomaly with respect to a dictio-

nary. However, while they use from the same image as the

dictionary, we use patches for local context and a dictionary

of complete images for global context. Also, we introduce

geometric warping to align k most similar patches/images

from the dictionary with the input patches/images. Most

importantly, however, Boiman and Irani’s method cannot

be easily extended to large unstructured dictionaries such

as the Google image database since in their method a patch

will be labeled as not salient (normal) if there exists even

one similar patch in the dictionary; once the dictionary is

sufficiently rich, as in our case, the method will not label

any patch as salient.

Perhaps closest to our work is the recent approach pro-

posed by Marchesotti et al. [20]. Similarly to our approach,

the context is retrieved from a database of images using kN-

N search. However, unlike in our approach, this database is

assumed manually annotated for saliency (bounding box-

es). The saliency of the k nearest neighbors is transferred to

the query in form of a bounding box. Clearly, the method

is semi-supervised and, furthermore, does not produce de-

tailed saliency maps.

Our work has been largely inspired by recent data-driven

approaches in computer vision [24, 25, 30, 31]. It has been

shown that given a large data set, there always exist visually

similar images to a query. Such neighbors have been shown

to be useful in object recognition tasks. In the case of our

approach, the neighbors provide context, i.e., relationship,

between objects or between objects and background.

Essential to our framework is the warping of nearest

neighbors in order to better match the query. To accom-

plish this, we borrow from the work of Liu et al. [18] that

proposes a robust optical flow algorithm to align similar ob-

jects in different images. We use this method to generate

context (mostly background) matched to the query.

3. Saliency estimation algorithm
As explained in the introduction, we view saliency as

anomaly relative to a context. The context could be local or

global. A context is instantiated by a dictionary of image

patches. In the local case, image patches are local neigh-

borhoods of the input image itself. Since the dictionary is

composed of regions internal to the input image, we call

this intrinsic saliency estimation. In the global case, im-

age patches are entire images that share a global context

with the input image and are therefore relevant for estimat-

ing saliency. Since we use information from outside the in-

put image, we call this extrinsic saliency estimation. Both

intrinsic and extrinsic saliency estimation share a common

computational framework that we motivate and describe in

what follows. We will first focus on the extrinsic case and

then describe how it can be adapted in a straightforward

manner to the intrinsic case at the end of this section.

3.1. Extrinsic saliency estimation

The high-level block diagram of our overall algorithm

for extrinsic saliency estimation is depicted in Fig. 2. A

more detailed view is presented in Fig. 3. Our algorith-

m for saliency estimation is motivated by anomaly detec-

tion in video analytics where an incident is picked out as

anomaly if it cannot be “explained” by previously seen in-

cidents. Our algorithm consists of three steps: 1) using a k-

nearest-neighbors (kNN) algorithm to discard images from

the dictionary that are irrelevant for saliency estimation, 2)

using a warping algorithm to geometrically align the k n-

earest neighbors to the input, and 3) estimating saliency as

the average absolute error, suitably normalized to the range

[0, 1], between the input and the warped nearest neighbors.

The underlying intuition and details of these three steps are

discussed below.

3.1.1 KNN image retrieval

The images in a large dictionary can be partitioned into two

groups: those which are relevant for determining saliency

in a given input image and those that are irrelevant. Images

that are totally dissimilar with respect to the input image are

not very useful for estimating saliency because relative to

them, almost all points in the input image would roughly be

“equally salient”. In other words, these images would only
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Figure 3. Detailed view of the image warping and anomaly esti-

mation steps for extrinsic (global) saliency estimation from Fig. 2.

The k nearest neighbor images Ii, i = 1, . . . , k, of the input image

Q are respectively warped, using the SIFT flow algorithm [18], to

the images Iw,i, i = 1, . . . , k which are approximately “aligned”

with Q. The absolute error images |Iw,i − Q| are averaged and

normalized to generate the final saliency map.

contribute global “noise-terms” which are uninformative for

estimating which regions in the input image have higher or

lower saliency (on a [0, 1] scale) compared to other parts of

the input image. One method for selecting only a small use-

ful subset of saliency-relevant images from a large dictio-

nary is to select only the k images that are closest to the in-

put where closeness is measured by some distance function

which captures global image properties such as color, tex-

ture, edges, etc. The selection of a smaller subset of images

for saliency estimation provides the added practical benefit

of computational tractability when the size of the dictionary

is very large.

We use the distance function from [8] which is based

on a weighted Hamming distance between binary hashes of

features that capture global image structure (we refer the

reader to [8] for the details). The binary hash representation

of images and the associated weighted Hamming distance

function have proved to be concise enough for fast search

while retaining enough discriminative power to reliably dis-

tinguish between different scenes.

To ensure that our image dictionary is sufficiently large

and diverse for retrieving globally visually similar images

for a wide spectrum of queries, we built it out of 100 million

natural images from online resources. For a dictionary this

large, exact kNN search is infeasible. We use a massively

parallelized implementation of the approximate kNN algo-

rithm developed in [25] which completes the entire search

and retrieval under one second.

Fig. 4 shows search results for a particular input image.

An examination of the search results shows that the neigh-

boring images indeed are within the same global context as

the input image.

Figure 4. The 42 nearest neighbors (right) of the input image (left)

retrieved by the algorithm of [25] using the image distance func-

tion of [8]. The k nearest neighbors of an input image in a large

dictionary correspond to images that are most relevant to saliency

estimation.

Like all kNN based methods, we need to choose a value

of k. Typically, the average distance between an input and

its k-th nearest neighbor decays with increasing values of

k. A sharp peak around 0 indicates that only a few images

are very close to the input. The variation of saliency esti-

mation performance for different values of k is discussed in

Section 4. We use the nominal value of k = 20 in all our

experiments for extrinsic saliency estimation.

3.1.2 Image warping

Although the neighboring images contain the same global

context, the objects they contain may not be geometrically

well aligned with those in the input image. For instance, it

may happen that both the input image and its neighbors have

similar horizons (in an outdoor scene) and similar-looking

objects but their positions and orientations may be slight-

ly different. Such misalignments, if unaccounted for, may

lead to poor estimates of saliency. We address this issue by

warping the neighbors so that they are well aligned with the

input image before estimating saliency. We use the SIFT

flow algorithm of [18] to geometrically warp each neighbor

image Ii, i = 1, . . . , k, retrieved by the kNN search, to align

it to the input image as illustrated in Fig. 5. The resulting

warped image is denoted in Fig. 3 as Iw,i.

Fig. 6 illustrates how the image warping affects the

saliency estimation. Without warping, the simple average of

all k nearest neighbors is both more blurred and misaligned

relative to the image than with warping.

3.1.3 Anomaly estimation

Each warped neighbor provides an approximation to the in-

put image. Some regions of the input image, such as the

background, may be well approximated by many warped

neighbors from the dictionary, while other regions may not

be well approximated by any. Regions that are better ap-

proximated by many warped neighbors are less salient as
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Figure 5. Illustration of image warping via the SIFT flow algorithm

[18]. (a) Input image; (b) 3 neighboring images retrieved by the

kNN method; (c) Neighboring images after warping using SIFT

flow.

Figure 6. Illustration of the importance of image warping. Left: in-

put images; middle: averaged neighbor images and corresponding

saliency maps without warping; right: averaged neighbor images

and corresponding saliency maps with warping. Notice the blur-

ring and misalignment of the vase and horizon without warping

and the corresponding misestimation of saliency at those location-

s.

they are commonplace among the relevant images in the

dictionary. Regions where the approximation is poor are

more salient. We measure the saliency S(x, y) at point

(x, y) of the input image Q(x, y) as the absolute error

|Iw,i(x, y) − Q(x, y)| averaged across all k warped neigh-

bors Iw,i(x, y), i = 1, . . . , k and normalized to the range

[0, 1]. Mathematically,

E(x, y) :=
1

k

k∑

i=1

|Iw,i(x, y)−Q(x, y)|

S(x, y) := E(x, y)/max
x,y

E(x, y)

Both the size and diversity of the dictionary contribute to

the accuracy of saliency. The size of a dictionary is related

to its redundancy and its diversity is related to its rank or

intrinsic dimensionality. At one extreme, if the dictionary

is extremely diverse but relatively small so that any two el-

ements are totally dissimilar, then any input image will be

well-approximated by only a few saliency-relevant warped

neighbors and consequently almost all parts of the input im-

age would be estimated as salient. At the other extreme, if

the dictionary is very large but not diverse so that all ele-

ments look alike, then if the input is similar to any element

then no part of it would be salient whereas if it is dissimi-

lar to any element then almost all parts of the input image

would be estimated as salient. A sufficiently large and di-

verse dictionary is therefore ideal. This is akin to the bias-

variance tradeoff in regression problems. Instead of using

the mean absolute error, one could use the mean squared er-

ror or other measure of goodness of fit. We have found that

they produce roughly similar results.

3.2. Intrinsic saliency estimation

The extrinsic saliency estimation algorithm described

previously is easily adapted to the scenario in which the

only image available for saliency estimation is the input im-

age, i.e., there is no external image dictionary available. The

idea is to use the set of all local image patches as a dictio-

nary and estimate saliency as before for each local patch

of the input image relative to the dictionary. In our experi-

ments, image patches are 16× 16 non-overlapping blocks.1

Then, for each block that we test for saliency, we use all the
blocks, i.e., k = dictionary-size, warp them and calculate

the difference and determine the saliency as we did in Sec-

tions 3.1.2 and 3.1.3. The saliency map of the input image

is then given by the composition of the saliency maps of the

non-overlapping blocks.

4. Results
We have tested the proposed methods and compared

them with state-of-the-art saliency estimation algorithms on

two data sets: Berkeley segmentation database (BSDB) [21]

and MSRA salient object database [19].

The Berkeley segmentation database contains 300 nat-

ural images with object boundaries traced manually by a

number of viewers. Depending on the image, individual

boundaries may mostly overlap or be largely disjoint. We

selected 50 images with clearly delineated foreground ob-

jects and we filled in the image area surrounded by the

boundaries to obtain a binary ground truth with the fore-

ground labeled as 1 and the rest labeled as 0. Some of

the images used and the derived ground truths are shown

in Figs. 7 and 9 in the first and last columns, respectively.

The MSRA salient object database consists of 2 sets of

images: set A with 20,000 and set B with 5,000 natural

1One can also use overlapping blocks but this increases the computa-

tional complexity.
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Figure 7. Comparison of saliency estimation results for various methods with our extrinsic approach for (k = 20) on the BSDB data set.

images. For each image, ground truth is known in form

of a bounding box that reflects what typical viewers deem

interesting in each image. We used the set B that contains

images with less ambiguity as to the location of saliency.

We filled in the bounding box with label 1 and the rest of

the image with label 0 to create our binary ground truth.

In our extrinsic approach, we used 100 million online im-

ages as the dictionary with k, the number of nearest neigh-

bors used, as high as 90, whereas in the intrinsic approach

we used 16×16 blocks as image patches and k equal to the

number of the remaining patches in the image.

In various tests we have compared our approach

with methods proposed by Itti et al. [14], Hou

and Zhang [11, 10], Achanta et al. [1] and the

context-aware approach of Goferman et al. [7]. For

the Itti et al.’s method we used source code from

http://www.saliencytoolbox.net, and for Hou

and Zhang’s methods, Achanta et al.’s method and Gofer-

man et al.’s method we used source code from the authors’

web site respectively.

Fig. 7 compares these four methods with our extrinsic

approach and the ground truth. Subjectively, our method

performs at least as well as other methods: Itti et al.’s
method lacks precise localization (large portions of the

background are deemed to be likely salient as well), Hou

and Zhang’s 2007 method concentrates on object bound-

aries while picking up saliency in the background too, their

2008 method misses large parts of salient objects and pro-

duces diffuse maps, whereas the method of Goferman et
al., though quite precise, captures a lot of background de-

tail too.

In an objective test, we have thresholded each

continuous-valued saliency map using various threshold-

s between 0 and 1 to produce a binary saliency map

(1 = above threshold, 0 = below threshold). Then, we

computed an average of true positives and false positives

Method BSDB MSRA

Achanta09 0.7442 0.6743

Itti98 0.8641 0.6967

Hou08 0.8579 0.7934

Goferman10 0.8957 0.8437

Extrinsic 20-NN 0.8728 0.8289

Intrinsic 0.8881 0.8389

Extrinsic 20-NN + Intrinsic 0.9042 0.8515

Table 1. Area under the curves from Fig. 8(a-b).

vis-à-vis ground truth derived from the BSDB database

(object shape) or MSRA database (rectangle). By vary-

ing the threshold, we produced true-positives-versus-false-

positives curves shown in Fig. 8(a-b). Clearly, both intrinsic

and extrinsic methods that we proposed perform as well or

better than the methods of Achanta et al.2, Itti et al. and

Hou and Zhang 2008. Interestingly, our intrinsic method s-

lightly outperforms the extrinsic method on these databases

suggesting that local context may be often enough. Howev-

er, a combined extrinsic/intrinsic method, that simply mul-

tiplies the saliency maps produced by the two methods, per-

forms even better. In fact, it outperforms the recent method

by Goferman et al. This may suggest that taking local and
global context simultaneously is beneficial. Table 1 shows

the area under each curve from Fig. 8(a-b).

The extrinsic results above have been obtained for kNN

search with k = 20. For comparison, Fig. 8(c) shows av-

erage performance for the extrinsic method (area under the

red curve in Fig. 8(a)) as a function of k. Clearly, the best

performance occurs around k = 15, then drops and increas-

es again around k = 55. There is no benefit from using

large values of k. This happens because for large k’s more

dissimilar neighbors are allowed and as such they cannot

accurately model the context.

2We do not use any post processing described in Achanta et al. [1],

which perhaps explains the sub-par performance.

422



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Itti98
Hou08
Extrinsic 20−NN
Intrinsic
Extrinsic 20−NN + Intrinsic
Goferman10
Achanta09

(a) BSDB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Itti98
Hou08
Extrinsic 20−NN
Intrinsic
Extrinsic 20−NN + Intrinsic
Goferman10
Achanta09

(b) MSRA-B

0 20 40 60 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

A
re

a 
un

de
r R

O
C

 c
ur

ve

(c) Area under curve for extrinsic (BSDB)

Figure 8. Comparison of average performance of various methods on: (a) BSDB, and (b) MSRA-B data sets, and (c) area under the curve

for our extrinsic method on BSDB data set (red curve in part (a)) as a function of k.

More experimental results for various methods are

shown in Fig. 9. On most images, the methods by Itti et al.
and Hou & Zhang produce saliency maps that concentrate

only on parts of foregrounds, while our extrinsic method de-

tects, with few exceptions, complete foregrounds. Although

our saliency maps are quite close to the ground truth on

many images, in some cases they are less accurate. How-

ever, note that the saliency maps shown are continuous in

value (0 to 1) from which a binary mask or bounding box

needs to be derived. Clearly, in order to accomplish this a

segmentation or classification step is needed. If such a step

exploits regularization via some prior models, the final bi-

nary map is likely to be very close to ground truth in many

cases shown in Fig. 9.

5. Discussion and conclusions

The framework for saliency estimation that we proposed

is conceptually simple and straightforward to implement,

especially in the intrinsic case – only warping and averag-

ing are needed. It is also computationally efficient, again

especially in the intrinsic case with disjoint patches; the

complexity, and performance, increase when patch overlap

is allowed. Although intrinsic context is often enough, its

combination with extrinsic context gives even better perfor-

mance, though at the cost of increased computational com-

plexity. Cumbersome today, a search through millions of

on-line images for global context is likely to be a commod-

ity task in the future on account of distributed computing in

the cloud.
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