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Abstract

Object segmentation needs to be driven by top-down
knowledge to produce semantically meaningful results. In
this paper, we propose a supervised segmentation approach
that tightly integrates object-level top down information
with low-level image cues. The information from the two
levels is fused under a kernelized structural SVM learning
framework. We defined a novel nonlinear kernel for com-
paring two image-segmentation masks. This kernel com-
bines four different kernels: the object similarity kernel, the
object shape kernel, the per-image color distribution ker-
nel, and the global color distribution kernel. Our exper-
iments show that the structured SVM algorithm finds bad
segmentations of the training examples given the current
scoring function and punishes these bad segmentations to
lower scores than the example (good) segmentations. The
result is a segmentation algorithm that not only knows what
good segmentations are, but also learns potential segmen-
tation mistakes and tries to avoid them. Our proposed ap-
proach can obtain comparable performance to other state-
of-the-art top-down driven segmentation approaches yet is
flexible enough to be applied to widely different domains.

1. Introduction

Object recognition and segmentation are two interdepen-
dent processes where solving one can help the other. From
the point view of segmentation, pure bottom up approaches
such as mean shift or normalized cuts can only segment ob-
jects that are highly salient with respect to the background.
Many interactive segmentation algorithms rely on human
input to recognize and localize the object from a complex
background. To create a fully automatic segmentation algo-
rithm, high level prior knowledge needs to be infused into
the segmentation process, either through customarily built
models or in some cases models learned from training ex-
amples. However, these models are usually created in a do-
main specific fashion that is difficult to generalize. In this

† denotes equal contribution.

Figure 1. Segmentations produced by our learning algorithm. Our
algorithm can be applied to different image domains with minimal
change once a segmentation training set is provided. This flexibil-
ity is made possible by using a novel kernel that fuses top-down
knowledge and low-level image cues in the structured SVM learn-
ing framework.

paper, we propose a supervised learning approach for seg-
mentation, where the only domain specific knowledge re-
quired is to select a specific image descriptor. With that and
a set of training segmentations, our algorithm will automat-
ically learn a discriminative model to segment a new image,
without any user intervention. The main contributions of
this paper are:

• We propose a kernelized structural support vector ma-
chine approach to learn discriminatively the mapping
from image to a segmentation mask.

• We combine high level object similarity information
(via image descriptors) with multiple low level segmen-
tation cues into a novel kernel function used in the struc-
tured SVM framework.

• Traditional segmentation regularizations, such as the
pair-wise smoothness, are preserved in our framework
and explicitly enforced during the learning process.
This way smoothness of the solution does not need to
be “re-learned” from training examples.

Our work is built upon several important developments
in computer vision: the availability of a large collections
of feature descriptors, the use of large margin classifiers
(e.g. SVMs) and the integration of high level prior knowl-
edge into Markov Random Fields. Specifically, our paper is
closely related to other works in these three directions:

Top Down Driven Image Segmentation Segmentation
can be driven by the top-down knowledge coming from ob-
ject detection [30, 31] or prior knowledge about the objects

2153



is exploited in part-based modeling to influence a bottom-
up grouping process [12, 28]. Our algorithm can be con-
sidered more similar to approaches that iteratively try to ac-
commodate bottom-up and top-down cues [16, 25, 15]. [16]
learns a set of common fragments that provides a local bias
to drive the Conditional Random Field (CRF) solution to
reduce segmentation errors on the training set. However,
the learned fragments are applied to all the training/testing
images, so it works well only when the objects are all from
the same class and are at roughly the same scale. In con-
trast, our approach becomes more flexible by incorporating
an object similarity kernel that can “select” relevant training
examples during training/testing. Another major difference
is that structured SVM is a descriminative learner, which
incorporates both positive and negative information.

Structured SVM and Max Margin MRFs Structured
SVMs have found their applications in many machine learn-
ing scenarios, ranging from Natural Language Processing
[22] to DNA sequence alignment [29] and to segmentation
of 3D scan data [2]. Also, recently they have been used
in connection with segmentation methods based on MFRs
and CRFs. The energy functions that model probability
distributions on these fields usually contain parameters that
need to be estimated. In [21] or [18] the authors show how
structured SVMs can be used to learn these parameters in
a principled manner, an alternative to the pseudo-likelihood
formulation used in [13], or more traditionally used cross
validation and piecewise training. The main difference of
our approach with previous work in structured SVMs for
segmentation, consists in combining recognition with seg-
mentation by training on a set of image-mask pairs via a
kernel function that incorporates object similarity informa-
tion (In [21, 18, 2] models are trained using single images,
to essentially learn MRFs parameters). In addition, by us-
ing non-linear kernels ([21, 18, 2] all used linear models),
we enforce a top-down knowledge that encodes complex re-
lationships between couples of image/mask pairs.

Object Class Recognition Object recognition has expe-
rienced tremendous growth in the past 10 years, especially
with the creation of the Pascal Challenge [1]. There are now
many different feature descriptors available (SIFT, HOG[6],
Self-similarity, etc.) that capture the appearance of objects
in a compact, fixed-length vector form. Our approach can
integrate any (or multiple) of these descriptors in our object
similarity kernel. In one of the experiments, we show that
even the response of part-based object detectors can be used
as a feature descriptor for our object similarity kernel.

The paper is organized as follows: Sections 2 and 3
formulate the segmentation problem under the Structured
SVM framework. Section 4 provides further implementa-
tion details. In Section 5 we present extensive experimental
evaluation on three datasets from different domains, while
we conclude and discuss future directions in Section 6.

2. Segmentation via Structured SVM Learning
We cast image segmentation as learning a prediction

function f : X 7→ Y that maps the space of images X to the
space of binary segmentation masks Y , based on a training
set of input/output pairs. Structured SVMs [23, 9] provide
a framework to tackle this problem and make it tractable
despite the exponential number of possible constraints.

The idea behind Structured SVM is to discriminatively
learn a scoring function F : X × Y 7→ R over input/output
pairs (i.e. over image/mask pairs). Once this function is
learned, the prediction function f can be obtained by maxi-
mizing F over all possible y ∈ Y , for a given image input:

y∗ = f(x) = argmax
y∈Y

F (x, y) (1)

In analogy to linear SVM, the scoring function is expressed
as a linear combination of a set of basis functions Ψ(x, y):

F (x, y; w) = wTΨ(x, y) (2)

The weight vector w is learned through the minimization of
a constrained quadratic optimization problem [9]:

min
w,ξ≥0

1

2
wTw + Cξ

s.t. ∀(ȳ1, . . . , ȳn) ∈ Yn : (3)

1

n
wT

n∑
i=1

[Ψ(xi, yi)−Ψ(xi, ȳi)] ≥
1

n

n∑
i=1

∆(yi, ȳi)− ξ

where ∆(yi, ȳi) is a function which measures the loss of
a mask ȳi if the expected mask is yi. Intuitively, the
constraints in (3) requires that for a training example pair
(xi, yi), F (x, y) has to produce a score that is higher than
the score of any other pair (xi, ȳi) by at least ∆(yi, ȳi). For
segmentation purposes, we use the simple sum of pixel dif-
ferences as the loss function:

∆(yi, ȳi) =
∑
p

I(yi(p)! = ȳi(p)) (4)

where I(·) is an indicator function.
Although there are exponential number of constraints in

(3) with respect to the dimensionality of y, [9] shows that
the problem can be solved via a cutting plane algorithm,
which involves constructing a working constraint set that is
built by incrementally adding the most violated constraints.
The search for the most violated constraint for the ith train-
ing example can be formulated as a maximization problem
(similar to solving for the final segmentation):

ŷi = argmax
y∈Y

∆(yi, y) + wTΨ(xi, y) (5)

which in our case can be solved via Graph Cuts as shown in
Sec.4.1. The learning stops when the objective function is
within a certain accuracy bound.
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To adapt the Structured SVM framework to solve the
segmentation learning problem, we make two important
choices. First, instead of letting y vary in the entire space
Y during the search of the argmax in (5) and (1), we re-
strict the search to Ys, subset of Y composed by smooth
segmentation masks (we assume that noisy/unsmooth solu-
tions are not correct, hence can be excluded from the search
space). This can be accomplished by appending a regular-
ization term to the target function, enforcing smoothness of
the solution. The resulting maximization problems become:

y∗ = f(x) = argmax
y∈Y

F (x, y) + Θ(x, y) (6)

ŷi = argmax
y∈Y

∆(yi, y) + wTΨ(xi, y) + Θ(x, y) (7)

The choice of treating regularization as a separate term
(Θ defined in (15)), not explicit part of the learning model,
simplifies the learning task a great deal, since it allows to
focus learning on other aspects of segmentation rather than
smoothness. Structured SVM does not have to learn that so-
lutions are smooth, since it is already imposed in the model.

The other choice, that makes our work different from
most of the prior work, consists in using kernel functions so
that we could work in the dual formulation. The advantage
is that an explicit expression for the feature vector Ψ(x, y)
(which could be very complex) is not required, since every-
thing can be written in terms of Mercer kernels:

K
(
(xi,yi),(xj ,yj)

)
= 〈Ψ(xi, yi),Ψ(xj , yj)〉1 (8)

These kernels are easier to describe analytically, since they
express the relationship between two image-mask pairs.
The solution of the dual problem gives a set of weights α∗

for the support vectors. The final scoring function F (x, y)
can be written as:

F (x, y) = w∗TΨ(x, y) = (9)∑
ȳ∈W

α∗ȳ

(
1

n

n∑
i=1

[
K
(
(x,y),(xi,yi)

)
−K

(
(x,y),(xi,ȳi)

)])

where ȳ = (ȳ1, . . . , ȳn) are the most violated constraints
found by Structured SVM learning. This scoring function
will be used in (6) to obtain the segmentation mask of x.

3. Designing a Kernel for Segmentation
One of the main contributions of this work is the design

of the kernel functions in (8). In contrast with most of the
work in structured SVM for segmentation, where the feature
vector Ψ is directly modeled (see for instance [21, 18, 2])
akin conventional linear SVMs, we chose to instead model

1In our specific case this is a generalized inner product between two
different spaces that yields an asymmetric kernel. More details in Sec. 3.

the kernel function that encodes the mutual agreement be-
tween two image-mask pairs. This choice has two main
advantages: as in non-linear SVMs it does not require the
explicit knowledge of the non-linear mapping to higher di-
mensional space and it also allows to encode complex rela-
tionships between two training samples (image-mask pairs).
In particular the kernel will evaluate the quality of the mu-
tual match between image-mask pairs: if the images are
similar, the masks have to be similar as well. In case ei-
ther the images are significantly different or the masks are
not matching, the kernel response has to be low. To sat-
isfy these general conditions, we choose our kernel to be
the product of the image kernel and mask kernel.

K
(
(xi,yi),(xj ,yj)

)
= Λ(xi, xj) · Ω(yi, yj ;xi, xj) (10)

where Λ(xi, xj) measures the image/object similarity and
Ω(yi, yj) measures the mask similarity. [23] proves that
such multiplicative kernel is equivalent in the primal to the
tensor product of the feature spaces produced by each in-
dividual kernel. [8] uses a similar multiplicative kernel be-
tween input and output variables, although their output ker-
nel does not depend on the input.

3.1. Object Similarity Kernel

The object similarity kernel Λ(x1, x2) is used in our
framework to modulate the other kernels, which are com-
paring two image-mask pairs. The presence of this term
essentially selects only pairs for which there is a good simi-
larity measure between the images/objects. At classification
time, this fact has an important effect: the testing sample is
essentially compared with the support vectors for which this
similarity measure is sufficiently high. We constructed Λ as
a gaussian kernel over the distance between feature vectors
computed from the two images:

Λ(xi, xj) = exp

(
− ||φ(xi)− φ(xj)||2

2σ2

)
(11)

where φ : X 7→ Rn is a n-dimensional feature vector com-
puted form the image content. In this paper we considered
two different types of descriptors. The first one is of general
applicability and consists of computing HOG features [6] at
fixed grid locations. The second one, of higher discrimi-
native power but object-class specific, uses the deformable
parts model object detector in [7] and forms a descriptor us-
ing the coordinates of the bounding boxes correspondent to
the different parts. The details can be found in Section 4.3.

3.2. Mask Similarity Kernel

The mask similarity kernel is designed to be a linear
combination of several individual kernels, each one captur-
ing a specific segmentation feature:

Ω(yi, yj ;xi, xj) =

L∑
l

βlΩl(yi, yj ;xi, xj) (12)
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In this paper we use three different mask similarity kernels.
Shape Kernel. The shape kernel, measures the degree of

agreement of the two masks. Denoting with yip the value of
the mask yi at position p and assuming yip a binary random
variable we can then write:

ΩS =
1

P

P∑
p=1

(
yipyjp + (1− yip)(1− yjp)

)
where P is the total number of pixels in the image.

Local Color Model Kernel. The Local Model kernel,
tries to measure how well mask i fits to image i via a fore-
ground/background color model built using image i and
mask j. Before defining the expression of the kernel, we
need to introduce a quantizer function h(xp) : RM 7→
{0, 1}Q that maps feature points to binary indicator vectors
(whereM is the dimension of the feature space andQ is the
number of quantization cells). We also introduce:

F ji =

∑P
p=1 h(xip)yjp∑P

p=1 yjp
(13)

as the histogram of the foreground computed on image xi
using mask yj . Similarly the background histogram is:

Bji =

∑P
p=1 h(xip)(1− yjp)∑P

p=1(1− yjp)
(14)

These two models are built using the features from image
xi and the mask information from mask yj . We can then
write the kernel expression as:

ΩLM =
1

P

∑P
p=1

(
F jTi h(xip)yip + BjTi h(xip)(1− yip)

)
Note that this kernel is not symmetric, i.e.
K((xi, yi), (xj , yj)) 6= K((xj , yj), (xi, yi)). Recently
non-symmetric kernels have gained popularity since they
allow to compare data pairs from two different input spaces
(i.e. query to documents in in web ranking or items to users
in recommendation engines). This significantly simplifies
the inference problem as explained in Section 4.1. In
[24, 27] the authors show that learning via asymmetric
kernels can be treated in the same way as symmetric
kernels, provided that the kernel is positive definite 2. In
other words, the SVM optimization retains its convexity
property. In our specific scenario, we notice that the final
kernel (consider for now only the contribution of the local
color model) is given by K = ΛΩLM . We can easily
show that, by choosing σ in (11) small enough the matrix
K becomes diagonally dominant (and therefore positive

2For an asymmetric matrix A, positive definite means the symmetric
counterpart A+A′ is positive definite

definite since the entries on the diagonal are positive).
Choosing a small σ also benefits the learning process itself,
since the matching by similarity becomes stricter and hence
features like shape become more meaningful.

Global Color Model Kernel. This kernel is constructed
in similar fashion to ΩLM , but measures how well each
image-mask pair fits a global color model built using all
training samples. Denoting with FG and BG global fore-
ground and background color histograms, we can write:

ΩGM =
[
1
P

∑P
p=1

(
FTGh(xip)yip + BTGh(xip)(1− yip)

)]
·[

1
P

∑P
p=1

(
FTGh(xjp)yjp + BTGh(xjp)(1− yjp)

)]
Differently from the local color model kernel, we make
ΩGM symmetric by multiplying the terms from example
i and example j. This won’t affect the complexity of the
inference because neither FG nor BG depend on yi or yj .

4. Implementation Details
4.1. The smoothness regularization term

The mask smoothness term we use in (6) and (5) is com-
monly used in many MRF based segmentation algorithms:

Θ(x, y) = µ
1

P

P∑
p=1

∑
q∈Np

B(yp, yq|x) (15)

Here p and q are pixels in the image, Np is a neighborhood
of pixel p, µ is a constant weight, B(yp, yq|x) is a standard
image-dependent binary potential:

B(yp, yq|x) =
|yp − yq|
dpq

exp

(
− (xp − xq)2

2σ2
x

)
(16)

where with dpq we denoted the euclidean distance between
pixel p and pixel q. In our implementation, µ is always kept
proportional to the sum of all α∗ in (9). After adding this
term, both (6) and (5) can be re-conducted as a special case
of a generic unary+binary energy function, so that Graph
Cuts algorithm can be used to efficiently find the global op-
timal solution [11, 5]:

E =

P∑
p=1

U(yp) +

P∑
p=1

∑
q∈Np

B(yp, yq) (17)

The binary term is standard in Graph Cuts based segmenta-
tion. The unary is a linear combination of the unary poten-
tial coming from different kernels (see (9), (10) and (12)).
They all depend linearly on yip (yi is the unknown mask,
while yj is the mask corresponding the to support vector).
The benefit of designing an asymmetric kernel is now evi-
dent. In fact, by making the kernel symmetric, one would
introduce a non-linear dependency on yip (in the denomina-
tor of (13) and (14)), which would prevent the use of graph
cuts to solve the inference problem.
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Figure 2. Left: the location of the 2x2 overlapping HOG descrip-
tors. The four HOG descriptors are concatenated to form a 216
dim. HOG Grid feature. Right: Horse detector bounding boxes
generated by [7], the coordinates of the 9 bounding boxes are con-
catenated to create a 36 dim. Detector Response feature.

4.2. Learning the Relative Weights between Kernels

The relative weights βl between kernels need to be
learned as well. In Multiple Kernel Learning methods
[3, 14, 26], the kernel weights and the support vector
weights are optimized in an alternating fashion, since one
can prove that the joint optimization problem retains the
convexity property [19]. However, in structured SVM, the
objective is to maximize the margin of the scoring func-
tion constraints, not the segmentation accuracy. So even if
MKL is applied, the result might not translate into improved
segmentation performance. This is in contrast with regular
SVMs, where the objective of the maximization is directly
correlated to the classification accuracy. Throughout our ex-
perimental evaluation, we found that a much more effective
approach consists in the joint optimization of the parame-
ters over a validation set, via steepest descent minimization
of the empirical segmentation loss. The validation set also
serves to search the optimal value of other parameters like
the C in (3) and σ in (11).

4.3. Object Feature Descriptors

Due to the complexity of the backgrounds in different
datasets, it is very important to choose object features that
correlate well with the position and pose of the object. We
tried two different types of object features: HOG [6] Grid
feature and the horse detector response feature (see Fig. 2).

HOG Grid features are HOG descriptor extracted on a
fixed 2 × 2 grid on the image and the 4 descriptors (each
has a dimention of 54) are concatenated to form a feature
vector. We use the code provided by Pedro Felzenszwalb et
al. [7] to generate the horse detector response feature. To
ensure that we always get a response vector, we ignore the
detection threshold and always pick the highest response.
The detector returns 9 bounding boxes (1 box for the over-
all horse location, and 8 boxes for the locations of different
parts). We then concatenate the coordinates of these bound-
ing boxes into a vector and normalize them with respect to
the size of the image. Note that the detector does not always
return an accurate bounding box. This will have less effect

on our algorithm since we are not directly using the bound-
ing box to constrain the segmentation. The bounding box is
only used as a feature vector for comparison.

4.4. Time Complexity During Training

We are using structured SVM’s one slack dual formula-
tion with margin rescaling constraints. One disadvantage of
working in the kernel space for structured SVM is that the
time complexity in training scales quadratically (comparing
to linearly in the linear structured SVM case) with respect
to the number of training examples [9]. This could pose a
problem for large scale datasets. [9] proposes to use a low
rank approximation to the real kernel matrix to reduce the
complexity. In our specific case, another possibility is to
truncate the object similarity kernel in (11), such that it will
return 0 for two images with sufficiently different descrip-
tors. This means that the kernel matrix, as defined in (10),
can be made sparse enough to need only a number of kernel
evaluations linear in the number of examples.

5. Experimental Results
We trained/tested our segmentation algorithms on three

different datasets: the Dresses dataset (from like.com in-
ventory), the Weizmann horses dataset [4], and the Oxford
17 cateogry flower dataset [17]. Each dataset is split into
three subsets. Accuracy for each set is computed using the
model trained (and tuned by searching the best parameters)
on the other two. The accuracies are then averaged across
the dataset. The Dresses dataset is composed of 600 images,
whose manual segmentations are available. The complex-
ity of this dataset comes from the fact that different type
of dresses are also appearing in several different configu-
rations: dresses worn by a model, dresses placed on man-
nequins or dresses occupying the full image. The goal of the
segmentation is to separate the dress from the background,
people and mannequins. The Weizmann horse dataset has
328 horse images, with different poses and backgrounds,
along with ground truth segmentation masks. The flower
dataset consists of 849 flower images and their correspond-
ing trimaps. To ensure the fixed length input/output to the
structured SVM framework, all the images are resized to
256×256, regardless of their aspect ratios.

We measured our segmentation performance using two
metrics: the overall pixel accuracy Sa and the foreground
overlapping ratio So. We can write Sa as:

Sa =
∑
p

I[L(p) = LGT (p)]/A (18)

where A is the area of the image, L and LGT are the for-
ground/background label map. It is a good error metric if
both foreground and background are equally important, but
it becomes less accurate for datasets whose object of inter-
est has limited area. So is defined as the intersection of the
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Table 1. Segmentation performance against GrabCut [20] with dif-
ferent initializations.

Dresses Dataset Sa (%) So (%)
KSSVM Seg + HOGGrid 93.48 82.36

GrabCut init. with AveMask 83.90 68.47
GrabCut init. with 1-NN mask 88.96 75.52
GrabCut init. with 5-NN masks 90.31 77.74

GrabCut init. with 10-NN masks 90.28 77.44
Horses Dataset Sa (%) So (%)

KSSVM Seg + Detector Feature 94.63 80.08
GrabCut init. with Bounding Box 69.53 50.39

GrabCut init. with AveMask 85.52 61.39
GrabCut init. with 1-NN mask 85.66 62.34
GrabCut init. with 5-NN masks 86.93 63.83

GrabCut init. with 10-NN masks 86.46 63.20

result mask and groundtruth mask devided by the union of
the two masks.

So = A(M ∩MGT )/A(M ∪MGT ) (19)

where M is the mask in the input image, while MGT is
the mask in the ground truth. It measures more directly the
quality of foreground masks.

The first experiment we present consists in a valida-
tion of the proposed algorithm against a baseline to illus-
trate the performance gain introduced by the learning algo-
rithm. Since, after the structural learning process, inference
is solved using graph cuts with a unary potential learned via
examples, we compared, as a baseline, the accuracy of our
algorithm with segmentation via graph cuts but with a dif-
ferent unary potential. We use OpenCV 2.1 GrabCut code
[20] and initialize its unary potential in two different ways:
averaging all the mask in the training set or averaging just
the masks of the K nearest neighbors in the training set. For
the horses dataset, we used the output of the object detector
to initialize GrabCut with the bounding box provided by the
detector. The results, presented in Table 1, clearly demon-
strate the increased accuracy in the segmentation using the
structural learning algorithm described in this paper.

Figure 3 shows how the structured SVM finds bad seg-
mentations of the training examples given the kernel based
scoring function. These segmentations, or most violated
constraints, are then punished during the learning process,
while segmentations similar to the ground truth masks are
promoted. In Figure 3 we can see how these bad segmenta-
tion carry some meaning: one (third column) is always the
inverse of the ground truth mask (second column), while
the others (columns 4 to 6) highlight potentially bad way of
segmenting the input image (i.e. including heads or legs, or
segmenting out part of the background).

We also present some qualitative results from the Dresses
dataset in Figure 4. Notice that, despite the complex back-
grounds and the presence of distractors (such as other peo-

Figure 3. Column 1: images from the Dresses dataset. Column 2:
ground truth masks. Columns 3 to 6: examples of most violated
constraints (i.e. bad segmentations) learned by the algorithm.

Table 2. Segmentation performance comparison with other state of
the art algorithms on the horse dataset. †Obj Cut only reported ac-
curacy on a small fraction of the horse dataset. ‡Cosegmentation
(reported accuracy on multiple 30 image sets) is a weakly super-
vised algorithm, which does not need segmentation masks in train-
ing, hence lower performance is expected.

Sa(%) So(%)
KSSVM Seg + HOGGrid 93.9 77.9

KSSVM Seg + Detector Feature 94.6 80.1
Levin & Weiss [16] 95.5 N/A

Obj Cut† [12] 96.0 N/A
Cosegmentation‡ [10] 80.1 N/A

ple besides the main model), the algorithm is able to reliably
separate the dress of interest from the background and from
other parts of the model’s body, such as arms, legs and head.

Table 2 summarizes the segmentation metrics we ob-
tained with different image feature descriptors and also the
comparison with some of the state-of-the-art results on the
horse dataset. Note that in [16] , the authors assume that a
prefect bounding box detection of the horse is available and
use that to scale and crop the images so that all horses are
in the center and with the same scale. In fact, even the state
of the art object detector will not give consistent bounding
boxes. We get comparable accuracy on the original horse
dataset, without any cropping or scaling. To further visual-
ize the contributions of each individual kernel, we plot the
foreground potential computed from each kernel on several
test images in Figure 5. We can see the effect of the im-
age similarity kernel on the shape potential, which tends to
draw information from similar shapes in the training exam-
ples.Also, in many cases the three kernels complement each
other to generate the final segmentation mask.

Figure 6 lists a few failure cases, the horse’s legs are
usually hard to segment because of the thin and elongated
structure, unless they have a very distinctive color from the
background. The other major issues consist in poses that are
not present in the training set, which means that the closest
support vectors will not generalize well into these examples.
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Figure 4. Some segmentation results on the Dresses dataset. Despite the presence of complex backgrounds and distractors (such as other
people besides the main model), the proposed algorithm shows promising performances.

Figure 5. 1st row: Different horse input images. 2nd, 3rd and 4th
rows: foreground potentials generated by the shape kernel, local
image kernel and global image kernel respectively. 5th row: final
segmentation results given by the learned structured SVM model.

Figure 6. Some failure cases of the learned model

Figure 7. Segmentation results on the Oxford Flower Dataset.

Finally we tested our algorithm on the Oxford Flower
Dataset [17]. Our algorithm achieves Sa = 97.66% and
So = 92.33% in the labeled region, which is comparable
with So = 94% reported in [17]. It has to be pointed out that
their method is very domain specific, relying on a flower
shape model that consists of flower center and petals, while
our method is more generally applicable. Figure 7 shows
some qualitative results.

6. Conclusions and Future Work
We have presented a segmentation approach that uses a

kernelized structural SVM to learn discriminatively, from
a training set of examples, to generate the most appropriate
segmentation mask of an unseen image. By designing novel
non-linear kernel functions, we combine high level object
similarity information (via object feature descriptors) with
multiple low level segmentation cues in an unified and prin-
cipled framework. The result is a supervised learning ap-
proach for segmentation of general applicability. The only
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domain specific knowledge requirement is the design of the
object descriptors, used in the object similarity kernel. Ex-
perimental evaluation suggests that our proposed approach
compares favorably with other state-of-the-art methods on
complex image segmentation benchmarks.

As potential future work, experimenting with other
descriptors in the object similarity kernel will be inter-
esting. Our approach does not yet model the boundary
curves very well, they are mostly driven by low-level cues.
Incorporating curve based shape knowledge could offer
additional benefits. Instead of relying on a single global ob-
ject similarity kernel, dividing the kernel into a parts-based
representation could solve some of our current difficulties
with the horse dataset and other objects with deformations
and articulations. On the learning theory side, it would be
interesting to establish a theoretical connection between the
complexity of the top-down models the algorithm can learn
and the number of segmentations needed in the training set.
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